&

EXPERT SYSTEM

IN

SOFTWARE ENGINEERING T

USING
STRUCTURED ANALYSIS AND

DESIGN TECHNIQUE(SADT)) __

THESIS -
i AR Intaek Klm R
Captain, ROKAF

 Approved for public release; Co - o
Distribution Unlimited S JUN,Z 1 1990

e = 7" AIR UNIVERSITY ”’”"‘“"1

AlR FORCE INSTITUTE OF TECHNOLOGY ~

Wright-Patturson Air Force Base, Ohio

. | 90 06 20 057

"ELECTE g~

. DEPARTMENT OF THE AIR FORCE &“E ey ¥ u

e Timageen

Vo
D

AFIT/GCS/ENG/90J-02

EXPERT SYSTEM
IN
SOFTWARE ENGINEERING
USING
STRUCTURED ANALYSIS AND
DESIGN TECHNIQUE(SADT)

THESIS

Intaek Kim
Captain, ROKAF

AFIT/GCS/ENG/90J-02 S
o [N

i ¢ b o~ |

N I

5 "

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90J-02

EXPERT SYSTEM IN SOFTWARE ENGINEERING USING
STRUCTURED ANALYSIS AND DESIGN TECHNIQUE(SADT)

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the

Accession For
Requirements for the Degree of NiTS crial
i DTIC T43
Master of Science (Computer Systems) | .~ =" g i
JL‘:tifiCn;viOL—*
; 13
L fioiribation/
Intaek Kim, B-S. 4 ﬂ\-ail . 1_ it Ccées
Captain. ROKAF f Tl suasor
a.p aln, "l\(st s ‘dl
|
-

June, 1990

Approved for public release; distribution unlimited

Acknowledgments

This thesis effort consists of designing and implementing an Expert System
which checks the syntax of the Structured Analysis and Design Technique (SADT)
language from a drawing model generated during the requirements analysis phase of

the software life cycle.

The development of the Expert System is separated into two parts. The first
part is to translate a Structured Analysis diagram into a set of predicate data forms
for SADT syntax analysis. The second part is to check the syntax of a Structured
Analysis Jlanguage through an inference engine and a rule-base knowledge.

I wish to express my gratitude to Dr. Gary B. Lamont, my thesis advisor,
for his guidance and inspiration throughout this effort. Also, I wish to thank my
committee members, Dr. Thomas C. Hartrum and Dr. Frank M. Brown, for their
contribution to this thesis. I also would like to thank the R.O.K. and U.S. Govern-

ments for allowing me to have this experience.

In preparing this documentation, I thank the two gentlemen, Arthur L. Sumner
and Terry L. Kitchen, for encouraging me and for English reviews. I would like to
thank my father, my mother, and my wife, Jeunglim Jang, for their encouraging and

support me. Finally, I want to thank my daughter, Yangheun.

To my father and mother.

Intaek Kim

i

Table of Contents

Page

Acknowledgments oL L 1
Table of Contents iii
Listof Figures Vi
Listof Tables o o o vii
Abstract . o . L e Vil
L. Introduction Lo 1-1
Background L o o 1-1

Statement of the Problem 1-2
Assumptions L Lo oo 1-2

Research Approach,, 1-2

Materials and Equipment 1-3

Overviewof Thesis 1-4

11 Literature Review 2-1
Introduction L o L L. 2-1
Requirements Analysis Phase 2-1

AFIT Structured Analysis Syntax 2-4

Expert System L. 2-7

Summary e 2-9

m

111

V.

V.

System Requirements Analysis
Introduction Lo L oo
Considerations of the Previous Studies
IDEF, Diagram Translator Requirements
IDEF, Syntax Expert System Requirements.
Validation Test Requirements
Requirements Analysis Diagrams
SUmMmAary . . v .o e e e e e e e e e

High Level Design
Introductiono oo
Previous Study Considerations
Screen Layout and Menu System
IDEF, Diagram Translator
IDEF, Syntax Expert System Components

Inference Engine
Knowledge Base
Data Base (Working Memory)
User Interface
Testing Techniques
Summary e

Low Level Design and Implementation
Introductiono
IDEF, Diagram Translator Design
Translation Rules

Activity
Boundaryo oo 0oL

v

3-1
5-1
3-1
5-3

NE

5-3

IDEF, Syntax Expert System 5-5

RuleBase. 5-8

Activity IDEFg Syntax 5-8

Boundary IDEFy Syntax 5-9

Software Test 5-14

Summary 5-15

VI. Conclusions and Recommendations 6-1
Introduction L 6-1

Conclusions 6-1
Recommendations L 6-2

Activity oL 6-2

Boundary L0 6-2

Summary 6-3

Appendix A. Requirements Analysis Diagrams A-1
Appendix B. Structured Chart, B-1
Appendix C. Data Structures of SAtool 0 C-1
Appendix D. User's Manuwal D-1
Appendix E. Programmer’s Guide E-1
Appendix F. Source Code F-1
Bibliography oo BIB-1
VIta . . e e e e e e e e VITA-1

List of Figures

Figure Page
2.1. Classic Software Life Cycle Model(12:20) 2-2
2.2, An example of IDEF, Diagram 2-6
2.3. A typical Expert System Structure 2-7
3.1. Provide SAtool 3-5
3.2 Provide SA Editor 3-6
3.3. Translate Diagram 3-8
4.1. Screen Layout 4-3
4.2, SAtool Menus. L 4-4
1.3. IDEF, Diagram with Parent 4-6
5.1. Data Flow Diagram for IDEF; Diagram Trauslator 5-2
5.2. A Typical Activity Box oo oo 5-3
5.3. Structure of IDEFy Syntax Expert System 5-7
54, Activity IDEFo Syntaxo oo 5-10
5.5. Activity IDEFg Syntax(continued) 5-11
5.6. Boundary IDEFg Syntax. 0L 3-12
5.7. Boundary IDEF, Syntax(Continued) 5-13

vi

List of Tables

Table Page
2.1. AFIT SADT syntax used by SAtool (9:A-3) 2-5
5.1. Translation Rules for Activity Box 5-4
5.2. Translation Rules for Boundary Arrows 5-6

Vi

AFIT/GCS/ENG/90J-02

Abstract

~ This thesis effort focuses on designing and implementing the Knowledge-Based
Software Assistant System (WBSAS) for the Structured Analysis Design Technique
(SADT) method developed by Softech, Inc¥ ™
Lov S

A Graphics Editor is used to create specific Structured Analysis (SA) dia-
grams and a graphical symbol syntax is derived from these diagrams. The devel-
opment of the KBSAS is divided into two parts: the design and implementation
of a graphics translator and an application of a knowledge-based system for syntax

checking.

First, the objective of the translator is to map a subset of the graphical symbol
svntax from a SA diagram into the first order predicate calculus. The SA diagram

information is represented in a set of predicate data forms.

Secondly, the objective of a knowledge-based system is to evaluate adherence
to proper SADT syntax. This is accomplished by generating SA rules associated
with either an activity box or boundary arrows. The requirements analvst and the
designer are provided with a means of recovering from a graphical symbol syntax

error(s) through a display window.

Specific emphasis focuses on a comprehens.ve mapping of the graphical symbol

syntax to predicate logic as well as development of an application of a rule-based

system using this capability. //)
L

1SADT is a trademark of Softech, Inc.
2developed by Steven E. Johnson at the Air Force Institute of Technology.

Vil

EXPERT SYSTEM IN SOFTWARE ENGINEERING USING
STRUCTURED ANALYSIS AND DESIGN TECHNIQUE(SADT)

1. Introduction

Buckground

There have been several thesis efforts in the field of Computer-Aided Software
Fugineering (CASE) tools to support the analysis and design stages of the software
process at the Air Force Institute of Technology (AFIT). One of these efforts was a

Graphics Editor for structured analysis with data dictionary support ' (9).

The SAtool is one of several requirements analysis and design C'ASE tools based
on the IDEF syntax?. This tool provides a means of developing IDEF diagrams
Y and data dictionary support. This tool also saves information derived from the
diagrams; however, SAtool does not have the capability of checking IDEF syntax.
To solve this problem, a validation scheme for checking the consistency of IDEI
methodology and providing error messages with error recovery is required. Using
the predicate data form, a specific IDEF, diagram from the SAtool 1s evaluated
for adherence to proper SADT syntax through the use of a knowledge-based expert
system (KBES). The earlier version of the validation tool was hosted on the SUN
workstations? with the expert system written in Prolog-1 and run on a Zenith 7-243

computer (10).

"The Graphics Editor is called SAtool.

“IDEF, is a version of SofTech’s SADT.

3Sometimes IDEF diagrams are called SADT diagrams.
1SUN is a trademark of SUN Microsystems, Inc.

1-1

The intent of this thesis effort is to continue the earlier investigation by expand-
ing the rule set, thereby developing a more integrated environment and analyzing

its performance.

Statement of the Problem

The specific objectives of this thesis investigation are to extend the earlier
predicate calculus definitions of SADT syntax to the more complete set of SADT
coustructs, to extend the expert system rule set based on the new definitions, to
integrate the graphical translation process in C with the expert system on a SUN
workstation, and also if time permits, to use the structure of the knowledge-based
SADT syntax system to incorporate the design knowledge of a specific software

application.

Assumptions

I'or the purpose of this investigation, several assumptions were made.
P

I. The primary users of this tool are AFIT graduate students and faculty.

[

The users of this tool are familiar with the Structured Analysis methiodology.
3. The users of this tool are familiar with the SAtool.

4. Although not necessary, the users of this tool are also familiar with Prolog.

Research Approach

The thesis objective is accomplished through the development of two major
components: an IDEFy Diagram Translator and an IDEFy Syntax Expert Systen.
The IDEF syntax for SAtool was studied, followed by a review of the design and
implementation of SAtool. The previous syntax rules of the syntax validation tool
were also reviewed. These were updated and changed as necessary to reflect the

development of the new system. The reusable components of the syntax validation

1-2

tool were extracted, new code was written, and new syntactical rules were generated

to implement the changes considered by the analysis.

The IDEF, Diagram Translator has three parts. The function of the first part
is Lo create a set of predicate data forms from a SAtool activity box in the IDEF,
Diagram in order to check the activity IDEF, syntax. The function of the second part
is also to generate a set of the predicate data forms from the current IDEF, Diagram
and its parent IDEF diagram in order to check the boundary IDEF, syntax. In the
third part, the objective is to create a file for the current IDEF, diagram in the form

of a set of the predicate data to speedically check the boundary IDEF, syntax.

The IDEFy Syntax Expert System consists of two major parts: an inference
engine and a rule base. The inference engine was selected as backward chaining
strategy (scarch) called BC3% which is a directed problem-solving (pattern matching)
process written in prolog. The rule base consists of activity rules and boundary rules.
The activity rules check the ’activity’ IDEF syntax and the boundary rules are to

check the boundary’ IDEF, syntax.

The system checks IDEF, syntax, displays error messages, and provides editing

suggestions interactively.

All software conformed to the software engineering standards in AFIT’s System

Development Documentation Guidelines and Standards draft #4 (8).

Materials and Equipment

The materials and eauipment for this effort were provided by the AFIT De-

partment of Electrical and Computer Engineering. The following items were used:

1. SUN workstations.

2. Berkeley Unix € version 4.3.

*developed by Dr. Frank M. Brown at AFIT.
SUnix is a trademark of AT&T.

i-3

3. Suncore graphics and Suntools environment.
4. The software developed in iliis thesis effort.

5. Prolog environment.

QOverview of Thesis

This thesis is divided into six chapters. Chapter I explains the history of AFIT’s
CASE tools based on SADT syntax and defines some of the terms to be used. Chap-
ter Il presents a literature review of the current issues that affect this thesis effort.
The requirements for the translator and the expert sysien for this thesis effort are
presented in chapter III. Chapter IV and V describe the high level and detailed de-
sign and implementation phases respectively. In chapter VI, the conclusions and the

recommendations are addressed for this thesis effort.

1-4

II. Literature Review

Introduction

The focus of this thesis investigation is to design and implement an application
of expert system formulation for checking the syntax of IDEF, diagrams as derived
from SAtool. The current SAtool is one of requirements analysis CASE tools based on
the IDEF, syntax which is a subset of SADT syntax. The purpose of this literaturc
review is to discuss the issues of the requirements analysis phase, AFIT Structured
Analysis Syntax as a subset of IDEF,; syntax, and a rule-based expert system

architecture.

Requirements Analysis Phase

The software life cycle represents the functionally distinct portions of develop-
ment and use of a software product from birth to death. The classic life cycle model
as shown in Figure 2.1 may be divided into six major phases: system engineering and
analysis phase, software requirements analysis phase, design phase, implementation,
testing, and finally maintenance phase (3). The requirements analysis process fo-
cuses specifically on software by definition. To understand the nature of the software
to be built, the software analysts must understand the information domain for the
software, as well as the required function, performance expectations, and interfacing
(12). Analysts should develop the software specification using a documentation tool
so that they may later compare the requirements against the solution because a com-
plete specification of software requirements is imperative to the success of a software
development effort. No matter how well-designed or well-coded, poorly specified
software will disappoint the user and bring grief to the developer (12). A number of
software analysis and specification methods have been developed and each method
has its own notation and point of view; however, there is a set of general principles

for requirements analysis:

System

Engineering '1 '

<

Analysis

Requirements

ﬂ

PN

Design

ﬂ

L2

PN

Code

L2

<

—

Testing

2

=¥

Maintenance

il

Figure 2.1. Classic Software Life Cycle Model(12:20)

2-2

1. The information domain and the functional domain of a problem must be

represented by syntax and understood by humans.

2. The problem must be partitioned in a manner that uncovers detail in a hier-

archical fashion.

3. Logical and physical representations of the system should be developed (12).

Many requirements analysis methods and tools have been developed during the
past decade. The methods and tools may be divided into three broad analysis cat-
egories: data flow-oriented analysis, data structure-oriented analysis and language-
based formal specification (12). The software requirements analysis methods were
originally developed to be applied manually; however, each of these methods is avail-
able in a computer-aided format (12). Several of computer-aided analysis tools have
been developed to automate the generation and maintenance of what was originally a
manual method. These tools make use of a graphical notation for analysis. This class
of tools produces diagrams, aids in problem partitioning and maintains a hierarchy of
information about the system (12). These CASE tools enable the analyst to update
information and compare the connections between new and existing representations
of the system. For example, the SAtool enables the analyst to produce a structured
analysis diagram and a data dictionary and maintain these in a data base that can
be analyzed for correctness, consistency, and completeness. The computer-aided

requirements analysis approach provides benefits as followings:

e improved documentation quality through standardization and reporting
¢ better coordination among analysts in that the data base is available to all

® gaps, omissions, and inconsistency are more easily uncovered through cross-

reference maps and reports
e the impact of modifications can be more easily traced

e maintenance costs for the specification are reduced (12:200).

2-3

AFIT Structured Analysis Syntax

The SADT syntax is based on a tabulation of some 40 notations in a paper
by Douglas T. Ross of Softech, Inc. (14). The notations give the definitions and
the semantics of the SADT graphic language. The SADT methodology provides a
means of handling large complex system problems. The SADT notations consist of
two major constructs: rectangular boxes and arrows. Rectangular boxes, identified
as verbs (activities), provide for the decomposition of the system parts. Arrows,
labeled with nouns (data structures), represent the data flow relationship among the
rectangular boxes. The rectangular boxes, arrows and English text build a diagram

which represents the whole system.

The U.S. Air Force Program for Integrated Computer-Aided Manufacturing
(ICAM) has developed the IDEF, (ICAM Definition Method Zero) ! language.
IDEF, syntax is a derivative of the SADT syntax and is used for software require-
ments analysis. The AFIT Structured Analysis syntax implemented by SAtool is
represented in Table 2.1 (9).

Column 1 in the table shows the line numbers of the SADT graphical notations
(14:20). Column 2 shows the name by which each notation was referenced in SAtool.

Column 3 indicates the page in the SAtool User’s Manual (9).

The SAtool provides a means of drawing the IDEF, diagrams and storing infor-
mation derived from the diagrams. Each diagram is drawn and stored individually.
An example of an IDEF, diagram drawn by SAtool is shown in Figure 2.2. Bozl,
Boz2, and Boz3 are for ACTIVITY NAMEs and the numbers in the rectangular
boxes represent NODE NUMBERs. The numbers in small rectangular boxes show
FOOTNOTEs. The label in a small circle is for TO/FROM ALL. In1, Out2, Con22,
Mech1, and etc. represent line LABELs for INPUT, OUTPUT, MECHANISM, and

ISee the reference 17. ICAM Definition method IDEF; Sep.1979.

2-4

Ross Article Term User’s Manual
Line Number Reference

1 BOX 2-2.3

2 ARROW 2-2,3

3 INPUT 3-26 (FIG)
3 OUTPUT 3-26 (FIG)
4 CONTROL 3-26 (FIG)
5 MECHANISM 3-11

6 ACTIVITY NAME 2-3,4

7 LABEL 2-3,4

12 BRANCH 3-9

13 JOIN 3-9

14 BUNDLE 6-14

15 SPREAD 6-14

18 BOUNDARY ARROW 3-17

20 DETAILED REFERENCE NUMBER] 2-3

22 2-WAY ARROW 3-26 (FIG)
24 TUNNEL ARROW 2-3

25 TO/FROM ALL 6-21

27 FOOTNOTE 3-26 (FIG)
28 META-NOTE 2-3

29 SQUIGGLE 3-26 (FIG)
30 C-NUMBER 2-3

31 NODE NUMBER 2-3

32 MODEL NAME 3-26 (FIG)
33 ICOM CODE 4-8

37 FACING PAGE TEXT 4-1

38 FEO (FOR EXPOSITION ONLY) 6-5

39 GLOSSARY 2-3

40 NODE INDEX 2-3

Table 2.1. AFIT SADT syntax used by SAtool (9:A-3)

2-5

AUTHOR: Intaek Kim DATE: 15/83/98|READER
PROJECT : Example REV: 1.8 DATE
lﬂlcx Con2|C2
Ini Out2/Ind
r—;—.
——qn Box1 g
1z | jouts]
t 2 Con22\
{y
. Out3
Box2 AUI
In3 Outd -
13 2 02
Box3
OutS
03
3
@ cont
2] con21 o
Mechl
M1
NODE : [TITLE: Make an Example NUMBER: C-12
A112

Figure 2.2. An example of IDEF; diagram

2-6

Knowledge |-
Base N {L
(Rules)
Inference :1‘ ::\V User
Engine Interface
Data Base
(Working K: jT
Memory)

Figure 2.3. A typical Expert System Structure

CONTROL. I1, C1, O1, M1, and etc. also represent ICOM CODEs for boundary

arrows.

Ezpert System

Knowledge-based expert systems are likely to be applied to requirements
analysis tasks. However, the definition of the knowledge base (facts, rules,
and necessary inferences to perform analysis) will remain a significant
challenge in the foreseeable future. (12:201)

Figure 2.3 presents the components of a general expert system: knowledge base

(rules), data base (facts; working memory), inference engine, and user interface.

The knowledge base can be represented by many different methods, such as
predicate calculus, lists, frames, semantic nets, production rules, etc. In this thesis
effort, the language of if-then rules was selected to represent the knowledge base, since
it provides several features which are modularity, incrementability, modifiability, and
transparency of the system. The if-then rule consists of two parts : condition and
conclusion. The logical condition part may contain one or more premises linked by
the conjunctions AND, OR, or NOT. If the conditions are true (met), the conclusion

part is also true (fired).

6
BN

L.

The data base is a portion of working memory where the current status of
problem is stored. Initially, the lists of object, attribute, and value (QOAV) triple
derived from a IDEF, diagram are stored. Then the new lists of OAV triple from
the inference process are added. The data base also stores a list of rules that have
been examined, and fired in some order. The rule order can be given later if the user

or developer requires an explanation of the reasoning process.

The inference engine is called a rule interpreter because its operation is like
a software interpreter for a computer language. The rule interpreter examines the
rules in a specific order searching for matches to the initial and current conditions
given in the working memory. As the rules continue to fire, they will reference one
another and form an inference chain. The firing of a rule may add new facts to the
working memory, which gives the rule interpreter additional information on which

to proceed. This process continues until the solution is found.

Given a desired goal, there are two basic approaches in searching for a solution:
forward chaining and backward chaining. In forward chaining, the rule interpreter
tries to match a fact in the working memory to the situation stated in the condition
part. If a fact in the working memory has heen matched, then that rule is fired.
The conclusion part could generate a new fact that is stored in the knowledge base.
This new fact may be used in the search for the next proper rule. This process
continues until the solution of the given goal is satisfied. In backward chaining, the
rule interpreter starts examining the conclusion part to look for a match. If a match
is found, then the working memory is updated recording the conditions that the
rule stated as necessary for supporting the matched conclusion (13). The backward
chaining process continues with the system repeatedly attempting to match the
conclusion part against the current system’s status. The corresponding condition
parts matched are used to produce new intermediate goal states which are recorded

in the working memory. This process continues until the given goal is proved.

Finally, the user interface provides a means of communication between the

2-8

user and the system. The user interface asks questions or presents menu choices for
entering initial facts in the data base. Any intermediate communications during the

problem-solving process are taken care of by the user interface.

Expert systems are far more useful if they have the following additional fea-

tures:

o Modularity:
Each rule defines a small, relatively independent piece of knowledge.
o Incrementability:
New rules can be added to tl. : knowledge base relatively independently of other

rules.

o Modifiability (as a consequence of modularity):

Old rules can be changed relatively independently of other rules.

e Support system’s transparency (4:316-317).

Summary

This thesis effort concentrates on translating an IDEF, diagram drawn by the
SAtool into a set of predicate data forms during requirements analysis. It also focuses
upon developing an application of a rule-based expert system for evaluating IDEF,
syntax. The literature review in this chapter provides understanding concerning the
main subjects of this thesis investigation: requirements analysis phase of software

development, IDEF, syntax, SAtool, and rule-based expert system components.

III. System Requirements Analysis

Introduction

This thesis investigation is classified into two major categories. First, the
IDEF, Diagram Translator is to be redesigned and reimplemented to translate any
IDEF, diagrams drawn by SAtool into a set of predicate data forms. It should create
a necessary file to be used for checking IDEF, syntax. The second category is to
design and implement the IDEF, Syntaxr Erpert System which is an application of a

knowledge-based expert system.

This chapter presents the considerations related to the development of the
IDEF, Diagram Translator requirements, IDEF, Syntax Expert System require-
ments, formalization criteria, the IDEF, diagrams of this tool, and validation test

requirements.

Considerations of the Previous Studies

The SAtool provides an interactive graphics editor for drawing IDEF, diagram
and a means of generating data dictionary information (9:3-2). The SAtool also
provides the capability to check IDEF, syntax for an activity box in any IDEF,
diagrams(10:2-1). The SAtool does not provide a means of checking IDEF, syntax for
any boundary arrows with the parent IDEF diagram, however, the SAtool provides
a means of checking IDEF, syntax for only one activity box in any IDEF, diagram.
The current SAtool checks IDEF, syntax through Zenith Z-248 workstations using
the expert system written in Prolog-1. The improved tool in this thesis effort should
interface with the SAtool, produce a set of predicate data forms for the activity boxes
and the boundary arrows information in any IDEFy diagrams, and provide the more
completed capability of checking IDEF, syntax. Also, the revised tool should satisfy

all requirements of the previous SAtool (9).

3-1

IDEFy Diagram Translator Requirements

The function of the IDEF, Diagram Translator is to generate the predicate
data forms from any IDEF, diagrams. The IDEF, Diagrain Translator should act
as a bridge between the current SAtool and the IDEF, Syntax Expert System. The
current SAtool was written in the C language and used graphics software packages
called SunView and SunWindow environment. Thus, the IDEF, Diagram Translator
should operate with the current SAtool. Since the current SAtool provides a means
of checking IDEFg syntax for only one activity box, to check syntax for boundary
arrows, the IDEF, Diagram Translator should be redesigned and reimplemented
in the C language. The predicate data forms generated by the IDEF, Diagram
Translator should be the initial data base for the IDEFy Syntax Expert System. It
is necessary to formalize the IDEF, syntax to produce the predicate data forms and
to check the IDEF, syntax in the IDEF, diagrams. IDEF, syntax is formalized as

follows:

. The formal definition of IDEF, syntax must contain the syntax information in

any IDEF, diagram and be described syntactically,

I~

provide the means to determine syntax errors in any [DEF, diagram,
3. provide a domain where the definition of consistency can be given,

4. serve as the final arbiter in cases where there is disagreement concerning the

exact meaning of the representation, and

5. should be able to be implemented in a computer system (10:2-3).

The next section, Requirements analysis Diagrams, describes the functional

decompositions for the IDEF, Diagram Translator.

IDEFy Syntax Frpert System Requirements

The IDEFg Syntax Expert System should allow the user to check the activity
IDEFy syntax and the boundary IDEF, syntax in any IDEF,; diagrams using a

created predicate data file.

The backward chaining search is useful when there are many more rules than
desired goals. A backward chaining inference engine was selected called BC3! which
directed problem-solving processes and acts as a rule interpreter (6) because the
backward chaining strategy is useful when there are many more rules than desired
goals. The rule base should be able to support the knowledge of IDEF, syntax with
the inference engine in accordance with the activity boxes and the boundary arrows.
To simplify the rule base, the rule base should be consisted of two separate parts
because the boundary arrows information is not necessary in checking the activity
IDEF, syntax and the activity boxes information is not needed for examining the
boundary IDEF, syntax. The first part, called the Activity IDEF, Syntax rule base,
should allow the checking of the Activity IDEF, Syntax using a created predicate file
which includes all information pertaining to an ac.ivity box in any IDEF, diagram.
The second part, called the Boundary IDEF, syntax rule base, should allow for
the checking of the Boundary IDEF, Syntax using a created predicate file which
includes all information pertaining to the boundary arrows in any IDEF, diagram

and its parent IDEF, diagram.

Validation Test Requirements

Some parameters can be used for evaluating the conformity of the requirements
with the tool. As mentioned in Chapter I, the important parameters are the accuracy
with which the tool checks the IDEF; syntax and the capability of which the tool
interactively displays error messages and editing suggestions. Other parameters to

be considered are user friendliness, maintainability, compatibility, and consistency.

'developed by Dr. Frank M. Brown at AFIT,

3-3

Requirements Analysis Diagrams

This section presents the functional model which defines and describes the
functional decompositions for the IDEF, Diagram Translator and the IDEF, Syntax
Expert System discussed in the previous sections. The IDEF, diagrams in this
section are based on the analysis of processes or activities and illustrate one level
of the functional decomposition with the facing page tcxt. The facing page text
provides additional information that is not easily inferred from the diagram. The
Data Dictionary entries provide even more detailed information in accordance with

cach activity and data item (22:4-5).

Figure 3.1 shows the top most level IDEF, diagram for the overall system of the
SAtool. The purpose of the Provide SAtool function is to create and edit an IDEF,
diagram, its data dictionary information, and the facing page text interactively (9).
The function also involves the process which produces the predicate data forms to

be used for the knowledge base of the IDEF, Syntax Expert System.

Figure 3.2 displays the first decomposition of the top most level of Provide
SAtool activity. This decomposition shows the two primary functions: Provide SA
Editor and Translate Diagram. The Provide SA Editor function is to draw the
activity IDEFo diagram and to generate its data dictionary information and its
pacing page text for activity and data entry. The Translate Diagram activity provides

a mcans of translating [DEF, diagrams into predicate data forms.

Figure 3.3 shows the decomposition of the Translate Diagram activity into three
functional components: Translate Activity, Translate Boundary, and Save Diagram.
The Translate Activity provides a means of translating an activity box in any IDEF,
diagrams into a set of predicate data forms through the translation rules of the
activity box and saving it into a temporary file. The Translate Boundary operation
is the process which translates the boundary arrows in any IDEF,; diagrams into a
set of predicate data forms through the translation rules of the boundary arrows and

saves it into a temporary file. Finally, Save Diagram provides a means of translating

3-4

A-0 Provide SAtool

Abstract: Provide SAtool provides a means of mechanism by
which the user is able to draw Activity IDEF0 Diagrams.
From these diagrams, Facing Page Text and Data Dictionaries
for Activities and Data and Predicate Data forms are
generated.

AUTHOR: Capt Kim, intaek DATE:84/18/98|READER
PROJECT : SAtool REV:1.1 DATE

User Interfac Translation Rules

Provide acing Page Texts
User Files SAtool IDEF® Dfagram
CRT Info

Predicates

NODE : TITLE: Provide SAtool NUMBER: C-1

Figure 3.1. Provide SAtool

A0 Provide SAtool

Abstract: Provide SAtool provides the user a mechanism by
which the user is able to draw Activity IDEF0 Diagrams.
From these diagrams, Facing Page Text, Data Dictionaries for
Activities and Data, and Predicate Data forms are generated.

Al Provide SA Editor provides a means of drawing
Activity IDEF(Q Diagrams. From these diagrams, Facing Page
Text and Data Dictionaries for Activities and Data are
generated.

A2 Translate Diagram provides a means of translating
IDEF0 Diagrams into Predicate Data Forms.

AUTHOR: Capt Kim, Intaek DATE :38/81/98|READER
PROJECT : SAtool REV: 1.1 DATE
c1 c2
ser Interface Translation Rules
[‘_—-43b
DD Definitions
Provide Facing Page Text 01
User files 1S4 Editor CRT Info . 02
I , [TOEFE Diagram ~
A 03
Transta
- o te Diagra Predicates
m 05
2
NODE : TITLE: Provide SAtool NUMBER: C-2
AB

Figure 3.2. Provide SA Editor

3-6

the IDEF, diagram into a set of predicate data forms and saving it into a file which is
specified by the user. Further functional decompositions are presented in Appendix

A.

Summary

This chapter presented the requirements analysis for the development of IDEF,
Diagram Translator and IDEF, Syntax Expert System. Since tuis investigation
extends the earlier version of the SAtool, this tool should satisfy all requirements
of the earlier version. This tool should also provide a means for displaying error
messages and editing suggestions. The functional decompositions for this tool was

presented in Requirements Analysis Diagrams section.

The next two chapters use the requirements developed in this chapter as the
fundamental for designing, implementing, and testing of IDEF, Diagram Translator

and IDEF, Syntax Expert System.

3-7

A2 Translate Diagram

Abstract: Translate Diagram provides the user a means of
translating IDEF0 Diagrams into Predicate Data Forms.

A21 Translate Activity provides a means of translating
an activity box in any IDEF0 Diagrams into a set of predicate
data forms through the translation rules of the activity box.

A22 Translate Boundary provides a means of translating
the boundary arrows in any IDEF0O Diagrams into Predicate data
forms through the translation rules of the boundary arrows.

A23 Save Diagram provides a means of translating the
IDEF0 Diagram into a set of the predicate data forms and
saving it into a file which user specifies interactively.

AUTHOR : Intaek kim DATE:308/81/98|READER
PROJECT: SAtool REV:1.8 DATE
Translation RulesiC1 lc2
User Interface
Transla .
IID1EFB D?agram te Activi o .Predicatesvm
t
Y 1
Transla
te Bounda @
r
Y 2
Save Di
agram f_@
3
[Activity Predicates
2] Boundary Predicates
[®) Diagram Predicates
NODE : [TITLE: Translate Diagram NUMBER: C-3
A2

Figure 3.3. Translate Diagram

3-8

1V. High Level Design

Introduction

The purpose of this chapter is to present and justify the preliminarv software
design for the IDEFy Diagram Translator (IDT) and the IDEF, Syntax Expert Sys-
tem (ISES). Throughout the remainder of this investigation, IDT and ISES refer to
these two particular systems. Preliminary design is associated with the transforma-
tion of requirements into the software architecture. The transformation starts with
several considerations of previous studies addressed in Chapter III. The modified
screen layout and menu selection are then presented. In addition, the main func-
tions of the IDEFy Diagram Translator, the IDEF, Syntax Expert System, and the

associated components are introduced.

Previous Study Considerations

Since the tool should interface with the SAtool, the hardware and the software
to be used are already chosen. Thus, the Sun3 and the Sun4 workstations using
the SunOS and the SunView window-based environment are iequired for this tool
because the SAtool was developed through the Sun workstation. Also since the
IDEF, validation tool was implemented with the C language in order to translate
the IDEF, diagram into the predicate data forms, the C language is used to expand
the capability of the translating process. This decision is reasonable because many
portions of the validation tool and the SAtool could be directly reused. Appendix C
represents a summary of the data structures which are used for the earlier version

of SAtool and this thesis effort.

Screen Layout and Menu System

In this thesis investigation, the screen layout of the SAtool and the validation

tool should be modified by adding new menu items for checking IDEF, syntax.

4-1

Figure 4.1 is a picture of the actual screen layout used by the tool.

The actual screen is divided into five windows: the Input Window, the Message
Window, the Selection Window, the Diagram Window, and the Data Dictionary
Window in vertical order. The function of each window is the same as in the SAtool
except the function of the Selection Window. The Selection Window, located directly
below the Message Window is used for selecting the menu which contains the next
desired operation. The six ovals arranged in left to right order are: RECALL DGM,
EDIT DD, EDIT FPT, MISC FUNC, SAVE DGM, and CHECK SYNTAX. The
function of RECALL DGM is to read a previously saved IDEF, diagram. The EDIT
DGM function is to create and edit an IDEF, diagram according to its attribute
menus. The function of EDIT DD is to create and edit data dictionary information.
The function of EDIT FPT is to edit facing page text of an IDEF, diagram. The
function of MISC FUNC is to save an IDEF, diagram, change directory, start new
diagram, and exit SAtool. The function of SAVE DGM is to save the graphics
information (.gph extension) and the data dictionary information (.dbs extension) in
files under the name provided by the user. Finally, The CHECK SYNTAX function
is to translate and save IDEF, diagrams as predicate data forms and to check IDEF
syntax. Figure 4.2 presents a picture of all menu selections to be used and their

decompositions.

Since the functions of all menu selections are the same as those of the SAtool
except Activity, Boundary, and Save {.pro) selections, the other detailed descriptions
of the functions of the menu selections except for above three are available in reference
(9). Further descriptions of Activity, Boundary, and Save (.pro) selection functions

are discussed in the next section.

IDEF, Diagram Translator

The translator for the IDEFg diagram is used to translate the IDEF, graphical

fecatures into predicate data forms. The requirements for the formalization criteria

4-2

A TOO

INPUT: DISABLED
MESSAGE: YELCOME, Please make a selection.
EDIT 00) L EOIT FPT_
|PROJECT : REV: DATE
NODE : [TITLE: NUMBER

Figure 4.1. Screen Layout

4-3

(RECALL DGM)

EDIT Line

EDIT DGM

(EDITDD }—

(EDIT FPT }—

EDIT Activity Box
EDIT Header Info
DELETE Footnote
DELETE Squiggle

ADD Activity Box
ADD Header Info
ADD Line
ADD/CHANGE Footnote
ADD Squiggle

L 2 |

Edit Line Label
Move Line Label
Edit TO/FROM Label
Edit ICOM Label
Redraw/Delete Line

Change Activity Name

Change Activity Number
Change Activity Box Location
Delete Activity Box

ADD DD

ADD MORE ALIASES
EDIT DD

SAVE DD IN FILE
DD-FINISHED

DISPLAY FPT
SAVE FPT IN FILE

MISC FUNC

Make Diagram (Normal)
Make Diagram (Sideways)
Change Directory
Display Directory
Start New Diagram
Redisplay Diagram

Quit (NO SAVE)

(savE paM

)______

Save for DB
Save Local

(cHECK SYNTAX

| Activity
) Boundary Arrow

Save(.pro)

FEdit

Author
Project
Date
Revision
Node
Title
Number

Edit
Edit
Edit

Edit
Edit
Edit

Add
Add
Add
Add
Add
Add
Add

Author
Project
Date
Revision
Node
Title
Number

Add ALL

Boundary Arrow
Tunnel Arrow
From ALL
Dot-T/R
Dot-B/L
Arrowhead
DONE

Boundary Arrow
Tunnel Arrow
To ALL
Dot-R

Dot~-L
Arrowhead
Turn-R
Turn-L
Branch-L
Branch-R
Join-R
Join-L

DONE

ADD Footnote

Change Footnote Number
Change Footnote Location

Figure 4.2. SAtool Menus

4-4

have been discussed in Chapter III. There are many ways to formalize the graphical
language such as PSL/PSA, TAGS, SREM, and etc (12:163-209). Also, there are
lots of different ways to represent knowledge for expert system, for example rules,
semantic nets, frames, scripts, predicate logic, and others (13:63-102). In this thesis
investigation, predicate logic is used to translate an IDEF, diagram into a set of
predicate data forms. The predicate logic is often used as a means of knowledge
representation in expert systems and is the basis for logic programming. Many spe-
cialists r~gard it as the single most important knowledge representation method. The
predicate logic also provides for symbols to represent objects and then allows these
symbols to be used as components of statements. As shown in Figure 4.3, the IDEF,
graphical notations used by the SAtool consist of two major constructs: activity box
and arrow. The informations related to an activity box are ACTIVITY NAME, AC-
TIVITY NUMBER, INPUT, OUTPUT, CONTROL, and MECHANISM. Although
there are many types of arrows such as BRANCH, JOIN, SPREAD, BUNDLE, and
others, the arrow type can be considered to be one of either the boundary arrow type
connected on the parent IDEF, diagram, the tunnel arrow type, or the interboxes ar-
row type which is connected between two boxes in the same IDEF, diagram. Among
the arrow types, only the boundary arrow type has the information of the relation-
ships between an IDEF, diagram and its parent IDEF, diagram. This boundary
arrow type can be considered as either boundary INPUT, OUTPUT, CONTROL,
or MECHANISM. The other arrow types are related to an activity box in an IDEF,
diagram. Thus, it is useful to translate and create separately the graphical informa-
tions for an activity box and the boundary arrows. Another reason for translating
the IDEF, diagram into a set of predicate data forms and generating seperately its
information is to reduce the size of the predicate data file for checking IDEF, syntax
and to provide simplicity of the knowledge base as well. Therefore, the function of
the IDEF, Diagram Translator is divided into three parts. The function menus of

CHECK SYNTAX in Figure 4.2 show the functions of the IDEF, Diagram Transla-

4-5

AUTHOR: Intaek Kim DATE : 18/085/98 [READER
PROJECT : figure 4.3 REV: 1.8 DATE
coni(Cl
Outil
Int __m’ box1 -0
11
Qut2
L 1]
Out3/In2
Parent § box3
Ini2 box Outd
02
3
box4
| OutS
03
4
D111
NODE : TITLE: Make an Example NUMBER: C-8
A123
AUTHOR: Intaek Kim DATE : 18/85/98 |READER
PROJECT : figure 4.3 REV: 1.8 DATE
Out2icy
2{;2____—__‘ Child 1
Out3
In12 ___J ! 01
12 f
, Child 2
2
NODE : TITLE: Parent box NUMBER: C-9
A1232

Figure 4.3. IDEF, Diagram with Parent

4-6

tor. The Activity selection menu is used to translate and create a file of the predicate
data forms automatically from an activity box clicked on by the user in any IDEF,
diagrams. The Boundary Arrow selection menu is used to translate and create auto-
matically a file of the predicate data forms from the boundary arrow information in
the current IDEF; diagram and the predicate data file of its parent IDEF, diagram.
I'inally, Save (.pro) selection menu is used to translate an IDEF diagram into a set
of predicate data forms and to save it to a file that the user specifies. This saved file
is to be used for checking boundary IDEF; syntax with the next decomposed IDEF,

diagram

IDEFy Syntar Expert System Components

The IDEF, Syntax Expert System provides a means of checking the IDEF,
syntax in any IDEF, diagrams using a created predicate data file. The components
of ISES are the inference engine (control strategy) which is selected as BC3, the
knowledge base (rule base) which consists of the IDEF, syntax rules, the data base
(working memory) which is made up of a list of facts derived from the IDEF, diagram,
and the user interface which supplies facts or other information to the ISES and

transmits expert advise to the user as shown in Figure 2.3.

Inference Engine. An inference engine applies the knowledge to the solution
of a specific problem. In general, the same control strategy can be used to reason
out all kinds of actual problems because it is separated from the knowledge base
for the particular application. One of the inference rules, called modus ponens, is
used in producing a proof which allows a fact or truth to be inferred from two other
statements. For example, if propositions Pand P implies Q are true, then proposition
Q is true. The inference engine repeatedly applies the method of modus ponens to
the knowledge base to extract a spccific value or solve a particular problem. During
consultation of the IDEFy Syntax Expert System, the following functions should be

performed:

e interface with users
e obtain and load the knowledge base

e apply the rules in the knowledge base and the facts in the working memory to

achieve goals

e display the messages about the results of checking IDEF, syntax.

In Chapter II, the backward chaining control structure has been represented.
Backward chaining is often beneficial when there are many more facts than final
goals (thus called goal-driven reasoning). Since the number of facts in any IDEF,
diagram is many more than that of goals for IDEF, Syntax, backward chaining is

useful for the ISES design.

Knowledge Base. The heart of the expert system is the knowledge base, which
contains the problem-solving knowledge of the particular application. In the IDEF,
Syntax Expert System, the knowledge base is represented in the form of if...then
rules and is separated into two parts: the knowledge base of the IDEF, syntax for
an activity box and the knowledge base of IDEF, syntax for boundary arrows. The
former includes the IDEF, syntax rules and goals about an activity box focused
on ACTIVITY NAME, ACTIVITY NUMBER, INPUT, OUTPUT, and MECHA-
NISM. The latter is made up of the IDEF, syntax rules and goals about boundary
arrows focused on boundary INPUT, OUTPUT, CONTROL, and MECHANISM.
Since the IDEF, syntax has semantic meanings, it is difficult to represent com-
pletely the IDEF, syntax to the knowledge base. For example, ACTIVITY NAME
should be used in the form of a verb, which needs rules as many as the number of

verbs in the dictionary.

In the previous section, IDEFy Diagram Translator, the rcasons why two
different predicate data files are gencrated separately have been discussed. Since

the knowledge base should be consistent with the IDEF, Diagram Translator, the

4-8

knowledge base for IDEF, Syntax Expert System should be separated into two sub-
components. It is also necessary to separate it into two sub-components in order to
reduce the complexity and redundency of the knowledge base because while check-
ing IDEF, syntax for an activity box, the knowledge base for boundary arrows is
unnecessary. The naines of the two separated portions of the knowledge base are the
ActivitySArule for the activity IDEF, syntax rules, and the BoundarySArule for the
bouindary arrow IDEF, syntax rules. A detailed discussion of IDEFy syntax rules

follows in Chapter V.

Data Base (Working Memory). The data base contains a broad range of infor-
mation about the current status of the problem being solved. The temporary output
files of the IDEF, Diagram Translator become the initial data base for the IDEF,
Syntax Expert System in accordance with checking IDEF; svntax of the activity
box or the boundary arrow. While checking the IDEF, syntax, the data base also
contains a list of rules that have been examined and fired. After checking IDEF,,

the sequence of the rules fired can be given in order to explain the reasoning process.

User Interface. The user interface allows the user to communicate with the
cxpert system and also provides the user with an insight into the problem-solving
process carried out by the inference engine. There are several ways to communicate
with the expert system such as questions and answers, menu choices, statements, and
others. In the ISES, the user interface facility as a piece of software is contained in
the inference engine and provides a means of asking questions and answering through
the verbose and why trace operation. It also provides menu choices in order to check

IDEF, syntax for activity box or boundary arrow.

Testing Techniques

There are two common techniques to test software referred to as black box and

white bor testing (12:470).

Black box testing enables the software engineer to derive sets of input condi-
tions that will fully test all functional requirements for a program. This attempts to

find errors in the following categories:

e incorrect or missing functions,
e interface errors,

e errors in data structures,

e performance errors, and

initialization and termination errors (12:484).

White box testing is a test method based on the control structure of the pro-

cedural design. This is used to derive the following test cases:

e guarantee that all independent paths within a module have been exercised at

least once,
e exercise all logical decisions on their true and false sides,
o execute all loops at their boundaries and within their operational bounds, and

e cxercise internal data structures to assure their validity (12:472).

As mentioned earlier, the black box testing method is useful at this point be-
cause it focuses on the functional requirements of the software. The functions defined
in the requirements analysis phase are compared to the requirements specification to
be sure that all requirements are satisfied. In the case of the IDEF; Diagram Trans-
lator, the black box test can be applied. For example, does the IDT translate IDEF,
diagram into a set of predicate data forms which contains all syntactical information
of the IDEF, diagram? In the case of the IDEF; Syntax Expert System, the black
box test can also applied. For example, does the ISES contains all syntactical rules

of IDEF, diagram comparision with the requirements specification.

4-10

Summary

This chapter presented a high level software desigu {or the IDEF, Diagram
Translator and the IDEF, Syntax Expert System. To be consistent with the earlier
version of IDT, several considerations of the earlier version are addressed. The
screen layout and the menu system modified were presented. In additicn to, the
main functions of the IDEF, Diagram and the components of the IDEF, Syntax
Expert are also addressed, and the test design was introduced. The next chapter
presents low level design, implementation, and software test for the IDEF, Diagram

Translator and the IDEF, Syntax Expert System.

4-11

V. Low Level Design and Implementation

Introduction

This chapter discusses the low level design and implementation of an IDEF,
Diagram Translator and an IDEF, Syntax Expert System specified in the previous
design chapter. The IDT becomes a portion of the SAtool and translates IDEF,
diagrams into the predicate data forms. These predicate data forms are used for
checking IDEF, syntax and become the initial data base (working memory) of the

IDEFg Syntax Expert System.

IDEFy Diagram Translator Design

The flow diagram model of the IDEFq Diagram Translator is shown in Figure
5.1. There are three components in Figure 5.1: Translate Activity, Translate Bound-
ary, and Save Diagram for the IDT. These three components accept an IDEF, dia-
gram, User’s Choice, and Parent Predicate as inputs and generate outputs such as
Activity Predicate, Boundary Predicate, and Diagram Predicate applied by Trans-
lation Rules. The function of Translate Activity is to translate an activity box in
any IDEF, diagram into the predicate data forms and produce a file of the predi-
cate data forms. The file name of the predicate data forms for an activity box is
CHECKBOX.PRO (temporary file). The function of Translate Boundary is to trans-
late boundary information in any IDEF, diagram and the parent diagram related to
the current IDEF, diagram into the predicate data forms and generate a file of the
predicate data forms which is a temporary file. The file name of the predicate data
forms for the boundary information is CHECKBOUNDARY.PRO (temporary file}.
The function of Save Diagram is to translate the IDEF, diagram into the predicate
data forms and save into a file of *.pro. The symbol * is a name which the user enters.
The *.pro file is used to check IDEF, syntax about the boundary arrows. Appendix

B shows the structure charts for the IDEF, Diagram Translator implementation.

5-1

User’s Choice R Translate Activity
Activity Predicates
Provide
SA Editor
Translate Boundary
Predicates
Boundary
User file
Parent
Info
User’s Choice
Diagram
Translation Rules Predicates

Figure 5.1. Flow Diagram for IDEF, Diagram Translator

5-2

CONTROL

!

NAME
INPUT OUTPUT
S ———

NUMBER

MECHANISM

Figure 5.2. A Typical Activity Box

The earlier version of the SAtool was implemented in C. To reuse many modules
of the earlier SAtool without modifications or with slight modifications, a decision

was made to proceed using C language for the IDEF, Diagram Translator.

Translation Rules

Since the IDEF, Diagram Translator consists of three components, it is rea-

sonable to discuss the translation rules according to Activity and Boundary.

Activity. A typical drawing model for an activity box is shown in Figure 5.2.
The IDEF, Diagram Translator should produce Activity Predicate data forms which
include all graphical information of an activity box. As discussed in Chapter IV,
the information of an arbitrary activity box, which is based on NAME, NUMBER,
INPUT, OUTPUT, CONTROL, and MECHANISM is shown in Figure 5.2. Among
the information, the NAME is a key information because the other information
depends on the NAME. For example, if the NAME is known among activity boxes,

the other information can be extracted easily. Table 5.1 presents the translation

5-3

Term Predicate Triple

NAME activityname(is, NAME) [activityname, is, NAME]

NUMBER NAME(number_is, NUMBER) [NAME, number_is, NUMBER]

INPUT NAME(input.s, LABEL) [NAME, input_is, LABEL]

OUTPUT NAME(output_is, LABEL) [NAME, output_is, LABEL]

CONTROL NAME(controlis, LABEL) [NAME, control.is, LABEL)

MECHANISM| NAME(mechanism.s, LABEL) [NAME, mechanism_is, LABEL]

NUMBER OF | NAME(has_input_number, [NAME, has_input_number,

INPUTS COUNT) COUNT]

NUMBER OF | NAME(has_control number, [NAME, has_output_number,

OUTPUTS COUNT) COUNT]

NUMBER OF | NAME(as_control number, [NAME, has_control number,

CONTROLS COUNT) COUNT]

NUMBER OF { NAME([NAME,

MECHANISME has_mechanism_number, has_mechanism_number,
COUNT) COUNT]

Table 5.1. Translation Rules for Activity Box

rules for an activity box. Column 1 in the table 5.1 presents the information items
of an activity box. Column 2 shows predicate data forms of the items. Since the
predicate data forms produced by IDEF, Diagram Translator become the initial
data base of the IDEF, Syntax Expert System, each item of the predicate data form
should be represented by a three-element list of the triple form: [Object, Attribute,
Value]. Column 3 shows the triples of the items. The triple form is used as the
actual input of the IDEF, Syntax Expert System. The activity box name, NAME,
is translated into the predicate activityname(is, NAME), which means activity box
is named as NAME. The predicate NAME(number_is, NUMBER) for NUMBER
means the number of activity box NAME is NUMBER. In the case of INPUT, it is
translated into the predicate NAME(input_is, LABEL), which means the input of

3-4

activity box NAME is LABEL. Similarly, in the case of OUTPUT, CONTROL, and
MECHANISM, they are easily translated into the predicate data forms as shown
in the table 5.1. In the case of NUMBER OF INPUTS, it is translated into the
predicate NAME (has_input_number, COUNT), which means activity box NAME has
COUNT INPUTS. This information is used for checking the number of inputs which
is limited and the boundary arrow. Also, NUMBER OF OUTPUTS, NUMBER OF
CONTROLS, and NUMBER OF MECHANISMS are translated similarly.

Boundai. The type of a boundary arrow is one of either input, output, con-
trol, or mechanism. These are the touched arrows of an activity box as well. Since
the boundary arrows should be related to the current IDEF, diagram and an activ-
ity box of the parent IDEF; diagram, the predicate information of the activity box
should have been saved already. Table 5.2 shows the translation rules for boundary
arrows. BOUNDARY INPUT in column 1 is translated into the predicate bound-
ary_input(is, LABEL) in column 2, which means LABEL is a boundary input. The
triple [boundary_input, is, LABEL] in column 3 represents the actual data base form
for the IDEF, Syntax Expert System. BOUNDARY OUTPUT, BOUNDARY CON-
TROL, and BOUNDARY MECHANISM are translated similarly as shown in Table
5.2. NUMBER OF BOUNDARY INPUTS is translated into the predicate bound-
ary_input(has.number, COUNT), which means the number of boundary inputs is
COUNT. In the case of NUMBER OF BOUNDARY OUTPUTS, NUMBER OF
BOUNDARY CONTROLS, and NUMBER OF BOUNDARY MECHANISMS, they

are each translated as shown in Table 5.2.

IDEF, Syntaz Ezpert System

The detailed structure of the IDEF, Syntax Expert System is shown in Figure
5.3. Since the user interface portion is contained in the inference engine as discussed
in Chapter IV, this is not mentioned in this chapter. Thus, the IDEF, Syntax

Expert System consists of three major components: Rule Base, Working Memory,

5-5

Term Predicate Triple

BOUNDARY boundary_input [boundary_input ,

INPUT (is, LABEL) is, LABEL]

BOUNDARY boundary_output [boundary_output ,

OUTPUT (is, LABEL) is, LABEL]

BOUNDARY boundary_control [boundary_control ,

CONTROL (is, LABEL) is, LABEL]

BOUNDARY boundary_mechanism [boundary_mechanism ,

MECHANISM (is, LABEL) is, LABEL]

NUMBER OF i)

BOUNDARY boundary_input [boundary_input ,

INPUTS (has.number, COUNT) has_number, COUNT]

NUMBER OF boundary_output [boundary_output \

BOUNDARY (has_number, COUNT) has_number, COUNT]

OUTPUTS

NUMBER OF boundary_.control [boundary_control ,

BOUNDARY (has.number, COUNT) has_number, COUNT]

CONTROLS

ggﬁ?gﬁlgf boundary_mechanism [boundary_mechanism ,
has_number, COUNT

Table 5.2. Translation Rules for Boundary Arrows

5-6

Rule Base

ActivitySArule

BoundarySArule

N\

Inference

> Engine
(BC3)

S

Working Memory

Activity
Predicate

Boundary

Predicate

Figure 5.3. Structure of IDEF, Syntax Expert System

and Inference Engine as shown in Figure 5.3.

The detailed discussion of the Rule Base is given in the next section, Rule
Base. The Working Memory (Data Base) is initially set up by the predicate out-
put of the IDEF, Diagram Translator. The predicate output is a collection of fact
tripples discussed in the previous section, Translation Rules. The inference engine,
BC3, which directed problem-solving processes and acted as a rule interpreter, was
available. BC3 is a shell for a backward chaining expert system. Since the backward
chaining strategy is good when there are many more facts than final goals, BC3 is

suitable for use as the inference engine of the IDEF, Syntax Expert System. Also,

5-7

since BC3 was originally used on the Zenth Z-248 workstations, in order to run it
on the Sun workstations, BC3 should be modified. The modified BC3 is listed in
appendix F.

BC3 was implemented in Prolog-1 which is a dialect of many Prolog languages
and is for the personal computer. To reuse BC3 with slight modification, Quintus
Prolog, which is available on the Sun workstations, was selected to implement the

inference engine for the ISES.

Rule Base

The inference engine (BC3) applies each element of the rule base to the solution
of the specific domain. The specific domain is divided into two categories, one for
an activity box and the other for the boundary arrows in any IDEF, diagram. Thus
the rule base (IDEF, Syntax) is separated into two parts: Activity IDEF, Syntax
and Boundary Arrow IDEF, Syntax.

Activity IDEF, Syntaz. The Activity IDEF, Syntax focuses on an activity box
in any IDEF, diagram as shown Figure 5.2. The following list in English sentences
is extracted from Figure 5.2 for Activity IDEF, Syntax.

e An acti™y box must have a name.
e An activity box must have a number except for the top-most level activity box.

e An activity box must have at least a touched control arrow and a touched

output arrow.
e If an activity box has touched arrows, the arrows must have their arrow labels.
o If an activity box lies in the top-most level, the box number must be empty.

e If an activity box is not in the top-most level, the box number must be within

1 to 6.

3-8

o In the case of CONTROL and OUTPUT, the number of touched arrows must

be within 1 to 5.

o In the case of INPUT and MECHANISM, the number of touched arrows must
be within 0 to 5.

Figures 5.4 and 5.5 show a more detailed Activity IDEF, Syntax according to above

English sentences.

Column 1 in Figure 5.4 and 5.5 shows the cases of INPUT, OUTPUT, and
NUMBER in the figure 5.2. In the case CONTROL and MECHANISM, if-then
rules are similar to QOUTPUT and INPUT respectively. Column 2 presents all the
diagram types which the user could possibly draw. Column 3 shows if-then rules
related to the possible drawings. As shown in Figure 5.4, Activity IDEF, Syntax
focuses on whether NAME, INPUT, OUTPUT, CONTROL, MECHANISM, and
NUMBER are correct or not. Thus the goals for Activity IDEF, Syntax rules become
a list of triples about NAME, INPUT, OUTPUT, CONTROL, MECHANISM, and
NUMBER.

Boundary IDEF, Syntaxz. The Boundary IDEF; Syntax is associated with
boundary arrows of an IDEF, diagram and its parent IDEF, diagram. The following

english sentences represent the Boundary IDEF, Syntax.

e There must be an activity box in the parent IDEF; diagram.

e The number of input, output, control, or mechanism arrow(s) of the parent
activity box must be equal to that of the boundary input, output, control, or

mechanism arrow(s).
o Each arrow of the parent activity box must have its label.
e Each boundary arrow must have its label.

e Each boundary arrow label must correspond with label of the parent activity

box arrow.

3-9

Case

Diagram

If-then rules

INPUT
(MECHANISM)

If there 1s no input arrow then
INPUT is correct on the activity
box.

HE|

If there is at least a blank LABEL
then there is a LABEL error on the
activity box.

If the number of input arrows is
greater than 5 then the number of
input arrows should be reduced.
Otherwise, INPUT is correct.

OQUTPUT
(CONTROL)

e - =

If there is no output arrow then
there is an OUTPUT error on the
activity box.

If there is at least a blank LABEL
then there is a LABEL error on the
activity box.

FE|

If the number of output arrows is
greater than 5 that of output
arrows should be reduced.
Otherwise, OUTPUT is correct.

NUMBER

NUMBER

If the activity box is the top-most
level and NUMBER is empty then NUMBER
of the activity box should be empty.

If the activity box is the top-most
level and NUMBER is not empty then
NUMBER of the activity box should
be empty.

If the activity box is not the top-
most level and NUMBER is greater
than 0 and less than 7 then NUMBER
of the activity box is correct.
Otherwise, NUMBER of the activity
box is beyond the limitation.

Figure 5.4. Activity IDEF, Syntax

5-10

Case Diagram If-then rules

If there is no activity box name then
NAME NAME there is a NAME error on the activity
box.

If there is a NAME on the activity
box then NAME is correct.

Figure 5.5. Activity IDEF, Syntax(continued)

o In the case of (boundary) CONTROL and (boundary) OUTPUT, the number

of arrows must be greater than or equal to 1 and less than 6.

o In the case of (boundary) INPUT and (boundary) MECHANISM, the number

of arrows must be within 0 to 5.

Figure 5.6 represents the more detailed Boundary IDEF, Syntax. Column 1
in Figure 5.6 and 5.7 shows the cases of Boundary Input and Boundary Output. If-
then rules for Boundary Mechanism and Boundary Control are similar to Boundary
Input and Boundary Output respectively. Column 2 shows the models of a par-
ent activity box which is possibly drawn focused on INPUT(OUTPUT) arrow(s).
Column 3 shows the models of Boundary Input(Output) arrow(s) which is possibly
drawn. Column 4 presents if-then rules about the Boundary IDEF, Syntax. Bound-
ary IDEFp Syntax focuses on whether the boundary arrows in any IDEF, diagram
correspond with the arrows on the parent activity box. Thus the goals for Boundary
IDEF, Syntax rules is a list of triples about Boundary Input, Boundary Output,

Boundary Control, and Boundary Mechanism.

Software Test

The software testing methods for IDEFy Diagram Translator and IDEF, Syn-

tax Expert System were performed using three steps: unit testing, integration test-

5-11

CASE

PARENT

CHILD

If-then rules

PARENT

THERE IS NO
PARENT BOX
INFORMATION.

DON'T CARE

If there is no information about
the parent activity box
then can not check.

BOUNDARY
INPUT
QMECHANBM)

DON’T CARE

_L;l..
—

If there is at least one

blank boundary arrow LABEL
then there is a LABEL

error.

DON'T CATY

If there is at least one

blank LABEL on the parent
activity box then parent
Input arrow has no LABEL.

LI

If the number of Input
arrows of the pareunt box

is greater than or less

than that of the boundary
Input arrows then there is
an error of the number of
parent Input and boundary
Input arrows.

If there is no Input arrow
of parent activity box and
boundary arrow then

boundary Input is correct.

If LABELSs of Input arrows
of the parent activity box
and boundary Input arrows
are all matched then
boundary Input is correct.

If there is at least one
LABEL which is mismatched
then there is an error of

mismatched LABEL.

DON'T CARE

If the number of boundary
Input arrows is greater
than 5 then the number of
those should be reduced.

Figure 5.6. Boundary IDEIF, Syntax

5-12

CASE

PARENT

CHILD

If-then rules

BOUNDARY

OUTPUT
(CONTROL)

DON'T CARE

H—
—
e

If there is at least one
blank boundary arrow LABEL
then there is a LABEL

error.

[

DON'T CARE

If there is at least one

blank LABEL on the parent
activity box then parent
Output arrow has no LABEL.

DON'T CARE

If there is no boundary
Output arrow then there
must be at least a boundary
Output arrow.

DON'T CARE

If there is no Output arrow
then there must be at least
an Output arrow on parent
activity box.

If the number of Output
arrows of the parent box

is greater than or less

than that of the boundary
Output arrows then there is
an error of the number of
parent Output and boundary
Output arrows.

If LABELs of Input arrows
of the parent activity box
and boundary Input arrows
are all matched then
boundary Input is correct.

If there is at least one
LABEL which is mismatched
then there is an error of
mismatched LABEL.

DON'T CARE

If the number of boundary
Output arrows is greater
than 5 then the number of
those should be reduced.

Figure 5.7. Boundary IDEF, Syntax(Continued)

5-13

ing, and validation testing (12:502). These methods use the white box testing meth-

ods discussed in Chapter IV.

The Unit testing step focuses on each module individually to be sure that it
functions properly as a unit (12:502). The test considerations are module interface,
data structure, boundary conditions, basis path through the control structure, and
error handling paths (12:503). Unit test considerations are applied to IDT and ISES
individually. For IDEF¢ Diagram Translator, IDEF, diagram is prepared. Predicate
data files are also prepared for IDEF, Syntax Expert System.

The Integration testing step is applied to take unit-tested modules and con-
struct a complete program structure to ensure that the interfaces between modules
are correct (12:507). Bottom-up integration is used because IDEF, Diagram Trans-
lator and IDEF, Syntax Expert System are lower-level than SAtool. First, testing
for IDEF, Diagram Translator was performed and then the whole system of SAtool
was examined. Also testing of IDEF, Syntax Expert System was applied separated
because ISES is separated with IDT and SAtool.

The Validation testing step is performed to provide final assurance that the
software meets the mentioned requirements. This focuses on the Are we building the
right product? (12:499). This step was used to examine whether the IDT produced
predicate data forms correctly and the ISES checked completely IDEF, syntax.

Summary

This chapter described the low level design and implementation of IDEF, Di-
agram Translator and IDEF, Syntax Expert System based on the requirements of
the tool. The translation rules and the components of ISES are also represented.

Finally, testing methodology applied in this investigation are discussed.

5-14

VI. Conclusions and Recommendations

Introduction

The objective of this thesis investigation was to design and implement an
application of expert system for checking IDEF syntax of IDEF, diagrams as derived
from the SAtool. This chapter presents the conclusions and directions for possible

future research.

Conclusions

This investigation is classified into two major categories: IDEF, Diagram
Translator and IDEF, Syntax Expert System. The work for the IDEF, Diagram
Translator was performed in two phases. Dnring the first phase, the formulation
of graphical features of the IDEF, diagram was derived through predicate calculus
representation, since the predicate calculus is a convenient representation for facts
and rules of inference. The formal definition of the IDEF, graphical features does
not have completeness but consistency because the IDEF, graphical language con-
tains semantic meanings. The second phase included the development of the IDEF,
Diagram Translator which translates the IDEF, graphical features in the IDEF,
diagram into a set of predicate data forms. The predicate data forms focus on an ac-
tivity box and associated arrows and on the boundary arrows in any IDEF, diagram.
Predicate data forms become the data base {working memory) for the IDEF, Syntax
Expert System. The IDEF, Syntax Expert System consists of the inference engine,
the knowledge base, the data base, and the user interface. The inference engine
applies the knowledge to the solution of a specific domain. To check IDEF, syn-
tax in any IDEF, diagram, the backward chaining control strategy is useful because
there are many more facts than final goals. The knowledge base was identified with
emphasis on the activity box and on the boundary arrows in any IDEF, diagram.

The knowledge base structure is easy to extend to new IDEF, syntax rules indepen-

6-1

dently of other rules and to change independently of other rules. Each segment of

the knowledge base defines a small and relatively independent piece of knowledge.

Recommendations

Based on the results of this study and the observations made during it, this sec-
tion presents some recommendations for future research which could lead to enhance

the capability of the ISES.

Activity Currently, the tool can check the IDEF, syntax of only a single ac-
tivity box and associated arrows in any IDEF, diagrams. The relationship among
activity boxes and arrows in composite IDEF, diagrams could be defined to enhance-

ments of the ISES’s capability. For example,

e The name of an activity box should not be the same as that of other activity

boxes in any IDEF, diagrams.

¢ The number of an activity box should not be the same as that of other activity

boxes in any IDEF, diagram.

¢ The line label on an activity box should not be the same as that on other

activity boxes in any IDEF, diagram.

Boundary Since the ISES can check syntax of the boundary arrows except the
tunnel arrow, add the IDEF, syntax rules about the tunnel arrow. This issue implies

IDEF, syntax check of the multilevel IDEF, diagrams.

Integrate the translation process with the syntax checking process to be more
user friendly. This issue needs to address how the C language should interface with

Quintus Prolog or some other prolog.

Apply the structure of the knowledge-based IDEF, syntax system to incor-
porate the design knowledge of a specific software application. Since the design

knowledge provides a means of abstracting software design into resuable modules.

6-2

the design knowledge using the IDEF; methodology can be reused for a similar soft-
ware design. The knowledge-based IDEF, syntax system uses IDEF, model segments
to represent design modules which are combined and refined to generate an entire

IDEF; model.

Summary

This chapter presented the conclusions derived from the design and imple-
mentation of an application of expert system for checking IDEF, syntax of IDEF,

diagrams drawn from the SAtool and the recommendations for future research.

6-3

Appendix A. Requirements Analysis Diagrams

This appendix contains the requirements analysis IDEF, diagrams for the
IDEF, Diagram Translator. These diagrams are not exactly one-to-one correspon-

dence with the implementation modules, but are close.

A-1

List of Figures

Figure Page
A.l. Provide SAtool (Node A-0) A-3
A.2. Provide SAtool (Node AQ), A-4
A.3. Translate Diagram (Node A2) A-5
A.4. Translate Activity (Node A21) A-6
A.5. Save Box Arrow Info (Node A213) A-7
A.6. Get Arrow Info (Node A2132) A-8
A.7. Get Inputs (Node A21321) A-9
A.8. Get Outputs (Node A21322) A-10
A.9. Get Controls (Node A21323) A-11
A.10.Translate Boundary (Node A22) A-12
A.11.Save Boundary Info (Node A223) A-13
A.12.Save Diagram (Node A23) A-14
A.13.Store Predicates (Node A232) A-15
A.l14.Traverse Boxes (Node A2322) A-16

A-2

A-0 Provide SAtool

Abstract: Provide SAtool provides a means of mechanism by
which the user is able to draw Activity IDEF0 Diagrams.
From these diagrams, Facing Page Text and Data Dictionaries
for Activities and Data and Predicate Data forms are

generated.

AUTHOR: Capt Kim, intaek DATE:84/16/38|READER
PROJECT : SAtool REV:1.1 DATE
User Interfac Translation Rules

- DD ngjnjﬁgggl
Provide acing Page exg>
User Files o SAtool IDEFB Diagram
CRT Info,
Predicates
NODE : ITLE: Provide SAtool NUMBER: C-1

Figure A.1. Provide SAtool (Node A-0)

A-3

A0 Provide SAtool

Abstract: Provide SAtool provides the user a mechanism by
which the user 1is able to draw Activity IDEF0Q Diagrams.
From these diagrams, Facing Page Text, Data Dictionaries for
Activities and Pata, and Predicate Data forms are generated.

Al Provide SA Editor provides a means of drawing
Activity IDEFO Diagrams. From these diagrams, Facing Page
Text and Data Dictionaries for Activities and Data are
generated.

A2 Translate Diagram provides a means of translating
IDEFO Diagrams into Predicate Data Forms.

AUTHOR: Capt Kim, Intaek DATE :38/81/98 |READER
PROJECT: SAtoo!l REV: 1.1 DATE
C1 c2
ser Interface Translation Rules
‘[)

" DD Defim'tiong¢
Provide Facing Page Text 01

User files SA Editor CRT Info 02
I1 —'04

1 TIDEFD Diagram

03

|

Transla
'~ o te Diagra Predicates
m 0s
2
NODE : FITLE: Provide SAtool NUMBER: (-2
A8

Figure A.2. Provide SAtool (Node A0)

A-4

A2 Translate Diagram

Abstract: Translate Diagram provides the user a means of
translating IDEFO Diagrams into Predicate Data Forms.

A21 Translate Activity provides a means of translating
an activity box in any IDEFQO Diagrams into a set of predicate
data forms through the translation rules of the activity box.

A22 Translate Boundary provides a means of translating
the boundary arrows in any IDEF0 Diagrams into Predicate data
forms through the translation rules of the boundary arrows.

A23 Save Diagram provides a means of translating the
IDEFQ Diagram into a set of the predicate data forms and
saving it into a file which user specifies interactively.

AUTHOR: Intaek kim DATE:38/01/98(READER
PROJECT : SAtool REV: 1.8 DATE
Translation Rules|C1 ICZ
User Interface
Transla
1DEF8 D?agram te Activi] ‘Predicatesﬁ
I1 01
ty
Transis
te Bounda @
r
y 2
Save Di
agram __E]_.
3
[Activity Predicates
[2] Boundary Predicates
@ Diagram Predicates
NCDE : TITLE: Translate Diagram NUMBER: C-3
A2

Figure A.3. Translate Diagram (Node A2)

A-5

A21 Translate Activity

Abstract: Translate Activity provides a means of translating
an activity box in any IDEF0 Diagrams into a set of predicate
data forms through the translation rules of the activity box.

A211 "find clicked box’ module provides a means of
finding an activity box which user specifies using the mouse
in the IDEF0 diagram.

A212 fsave header info’ module provides a means of
saving the head information of the IDEF0 diagram which 1is
needed to check Boundary IDEF0 Syntax.

A213 "save box arrow info’ module provides a means of
grasping the information of the activity box and the arrows
which are attatched on the activity box.

AUTHOR: Intaek Kim DATE : 38/81/98[READER
PROJECT : SAtool REV: 1.0 DATE
User Interface{C2 c2

Translation Rules

find
IDEFA Diagram box structure
_______._5_-—q clicked

11

box
1

save
header > [L
info

01

header info

save
box arrow
info

box arrow info

@ Activity Predicates

NODE : [TITLE: Translate Activity NUMBER: C—4
A21

Figure A.4. Translate Activity (Node A21)

A-6

A213 save box arrow info

Abstract: ’‘save box arrow info’ module provides a means of
grasping the information of the activity box and the arrows
which are attatched on the activity box.

A2131 ‘get box info’ module provides a means of
holding and saving the activity box name and the number into
a file in forms of predicate using the translation rules.

A2132 ‘get arrow info’ module provides the information
of the arrows which are touched an activity box in forms of
predicate.

AUTHOR : Intaek Kim DATE:38/81/398|READER
PROJECT : SAtool REV: 1.8 DATE
b truct Ci Cc2
O structure Translation Rules
IDEFE Ofagram ?::obox box_info . box arrow info
I1 01
1
get
arrow /
info arrow info
NODE : ITITLE: save box arrow info NUMBER: C-5
A213

Figure A.5. Save Box Arrow Info (Node A213)

A-7

A2132 get arrow info

Abstract: ‘get arrow info’ module provides the information
of the arrows which are touched an activity box in forms of
predicate.

A21321 get inputs’ module provides a means of
grasping the predicate data forms of all kind of input arrows
which are touched on an activity box.

A21322 "get outputs’ module provides a means of
grasping the predicate data forms of all kind of output arrows
which are touched on an activity box.

A21323 *get controls’ module provides a means of
grasping the predicate data forms of all kind of control arrows
which are touched on an activity box.

A21324 get mechanisms’ module provides a means of
grasping the predicate data forms of all kind of mechanism arrows
which are touched on an activity box.

AUTHOR: Intagk Kim DATE :88/84/98 |[READER
PROJECT : SAtool REV:1.8 DATE
box structurelCi c2
. 1Translation Rules
[%
IDEF@ Diagram $et " inputs >
T nputs 4 © (01
, I
get '
outputs outputs
o)
: b
get
controls |controls
= 0
J 7
get
mechanism | __
s
4 mechanisms
NODE : [TITLE: get arrow info NUMBER: C-6

A2132

Figure A.6. Get Arrow Info {Node A2132)

A21321 get inputs

Abstract: ’get inputs’ module provides a means of grasping
the predicate data forms of all kind of input arrows which
are touched on an activity box.

A213211 ’get single head input’ module provides a means
grasping the single headed input arrows’ information translated
in the predicate data forms which are touched on an activity
box.

A213212 ‘get double head input’ module provides a means of
grasping the predicate data forms of the double headed input arrows
which are touched on an activity box.

A213213 ‘get doublehead in/w slash’ module provides a
means of grasping the predicate data forms of the double headed
input arrows with the slash which are touched on an activity box.

AUTHOR: Intaek Kim DATE:308/81/98 |READER
PROJECT : SAtool REV:1.8 DATE

box structurelti Icz
Translation Rules

I@ —_

IDEF@ Dtagram |99t 8in input labels 1nputs
T_"—'._—. gle head ‘01

input ")
P 1 Cr

get dou input labels

ble head

input g
2

get dou
blehead 1
n/w slasg input labels

NGOE : TITLE: get inputs NUMBER: C-7
A21321

Figure A.7. Get Inputs (Node A21321)

A-9

A21322 get outputs

Abstract: "get outputs’ module provides a means of
grasping the predicate data forms of all kind of output arrows
which are touched on an activity box.

A213221 'get single head output’ module provides a means
of grasping the predicate data forms of the output arrows
with a single head which are touched on an activity box.

A213222 'get double head out/con’ module provides a means
of grasping the predicate data forms of the output arrows
with the double head one for the output and the other for the
control arrow of another box.

A213223 *get double head out/in’ module provides a means
of grasping the predicate data forms of the output arrows
with the double head one for the output and the other for the
input arrow of another box.

A213224 ‘get double head output’ module provides a means
of grasping the predicate data forms of the output arrow
which leaves the right side of an activity box and there is a
double head.

AUTHOR: Intaek Kim DATE:38/81/98 [READER
PROJECT : SAtool REV:1.8 DATE

box structure|cy c2

Translation Rules

[®]
get sin output labels t
__EJ,._. gle head P . oy PL‘SVU
1T) 1
output ' ff

get dou output labels

o ble head o
out/con g
get dou output labels
ble head -
out/in 9
o1
get dou
bie head K
output output labels
4
[10EF8 Diagram
NODE : ITLE: get outputs NUMBER: C-8

421322

Figure A.8. Get Outputs (Node A21322)

A-10

A21323 get controls

Abstract: "get controls’ module provides a means of
grasping the predicate data forms of all kind of control
arrows which are touched on an activity box.

A213231 ‘get single head control’ module provides
a means of gre¢sping the predicate data forms of the control
line which cones to the upper side of an activity box and
there is a single headed arrow.

A213232 "get double head control’ module provides
a means of grasping the predicate data forms of the control
line which comes to the upper side of an activity box and
there is a double headed arrow.

A213233 "get double head con/slash’ module provides
a means of grasping the predicate data forms of the control
line which comes to the upper side of an activity box and
there is a double headed arrow with a slash.

AUTHOR : Intaek Kim DATE:30/081/98 READER
PRDJECT ; SAtool REV: 1.8 DATE
box structure|Cl c2
Translation Rules
l‘—{g’ |
get sin control labels contrcls
IDEFB Dfagram lgie head ' ot
I control »
1
get dou [control labels
ble head
control &
: jj
get dou
ble head S
con/slash [contral labels
NODE : TITLE: get controls NUMBER: C-9
A21323

Figure A.9. Get Controls (Node A21323)

A-11

A22 Translate Boundary

Abstract: Translate Boundary provides a means of translating
the boundary arrows in any IDEF0 Diagrams into Predicate data
forms through the translation rules of the boundary arrows.

A221 'get parent box’ module provides a means of
grasping the predicates for the parent activity box and
producing the parent information.

A222 ’save null boundary’ module provides a means of
grasping the predicates if there is no the boundary arrow in
according with the input, output, control, or mechanism of
the IDEF0 diagram.

A223 *save boundary info’ module provides a means of
grasping the predicates of the boundary arrows if there is at
least one boundary arrow in the IDEF0 diagram.

AUTHOR: Intaek Kim DATE:38/81/S8READER
PROJECT : SAtool REV:1.8 DATE
User Interface|C2 C1
Translation Rules
I ' 3 Boundary Predicates
IDEFQ Diigram g:: z:: parent info .
n [l [01
1 l g
save nu null boundary
11 bounda N
ry G
]
save bo
undary in [~
fo boundary info
NODE : [TITLE: Translate Boundary NUMBER: C-18
A22

Figure A.10. Translate Boundary (Node A22)

A223 save boundary info

Abstract: "save boundary info’ module provides a means of
grasping the predicates of the boundary arrows if there is at
least one boundary arrow in the IDEFO diagram.

A2231 ' search boundary lines’ module provides a means
of searching for the boundary lines for the IDEF0 diagram and
producing a linked list of line structure as the output.

A2232 "get boundary line labels’ module provides a
means of grasping the line labels of the boundary lines in the
IDEF0 diagram.

AUTHOR : Intaek Kim DATE:30/81/90|READER
PROJECT : SAtoo) REV: 1.0 DATE

C1 c2

parent info Translation Rules

.

IDEF@ Diagram |search

—_—
11 boundary —
lines
1

boundary lines

| get bou
=l ndary 1in boundary info -
e labels 01
2
NODE : FITLE: save boundary info NUMBER: C-11
A223

Figure A.11. Save Boundary Info (Node A223)

A-13

A23 Save Diagram

Abstract: Save Diagram provides a means of translating the
IDEF0 Diagram into a set of the predicate data forms and saving
it into a file which user specifies interactively.

A231 The function of ‘get file name’ module is to get
a file name from the user in order to save the predicate data
forms for the IDEF0 diagram into it.

A232 The function of ’store predicates’ module is to
save the predicates for the IDEF0 diagram into a file which the
user specifies.

AUTHOR: Intaek Kim DATE :38/81/98 [READER
PROJECT : SAtool REV:1.0 DATE
c2 Translation Rules|Ci
User Interface
get 11
e name file name
1
- store
IDEL "9 Diagram radﬂ:uges Diagram Predicates _
I1 01
2
Nogg: ITITLE: Save Diagram NUMBER: C-12
A

Figure A.12. Save Diagram (Node A23)

A-14

A232 store predicates

Abstract: The function of ‘store predicates’ module is to
save the predicates for the IDEF0 diagram into a file which the
user specifies.

A2321 tsave header info’ has the same function of module
A212, See A212 description.

A2322 ‘traverse boxes’ module function is to traversing
every boxes in the IDEF(0 diagram.

AUTHOR : Intaek Kim DATE :88/85/96 [READER
PROJECT: SAtool REV: 1.8 DATE
file name(Cl |C2 p;i;L,Translat1an Rules
5]
Diagram Predicates
save he
_J0EF0 Dtagran 250 10 reader tnto § R

01

1

travers
e boxes boxes info

) User Interface

INODE : ITLE: store predicates INUMBER: C-
o p! BE c-13

Figure A.13. Store Predicates (Node A232)

A-15

A2322 traverse boxes

to gether

Abstract: ‘traverse boxes’ module function is to traversing
every boxes in the IDEF0 diagram.
A23221 ‘get a box’ module function is to get the
information for an activity box in the IDEFO0 diagram.
A23222 "save box arrow info’ module function is the
same as module A213,
A23223 "get boxes arrows’ module function is
the predicates of every activity box and arrow in the IDEFQ
diagram.
AUTHOR: Intaek Kim DATE :88/85/98 |READER
PROJECT: SAtool REV:1.8 DATE
c2 file_name |c1]c3
User Interface *{ Translation Rules
get a
IiDEFB Diegram box .
1 %:
box structure
save
box arrow [
info
box arrou info
get .
boxes boxes info
arrows 01
NODE : TITLE: traverse boxes NUMBER: C-14

A2322

Figure A.14. Traverse Boxes (Node A2322)

A-16

Appendix B. Structured Chart

This appendix contains the detailed design structure charts for the IDEF,
Diagram Translator implementation. The detailed design is concerned with the
requirements analysis diagrams in appendix A. There is a close, but not exactly
one-to-one, correspondence between the design modules and the implementation

modules.

B-1

List of Figures

Figure Page
B.1. Provide SAtool(Module 1.0) B-3
B.2. Save Box Arrow Info(Module 1.2.1.3) B-4
B.3. Get Outputs(Module 1.2.1.3.2.2) B-5
B.4. Get Controls(Module 1.2.1.3.2.3) B-5
B.5. Translate Boundary(Module 1.2.2) B-6
B.6. Save Diagram(Moedule 1.2.3) B-7

Provide
SAtool
1.0

Provide
SA Editor
1.1

Translate
Activity

1.2.1

find

clicked

box
1.2.1.1

N

Translate
Diagram

1.2

Translate
Boundary

1.2.2

Save
Diagram

1.2.3

save
header
info

1.2.1.2

save
box arrow
info

1.2.1.3

Figure B.1. Provide SAtool(Module 1.0)

B-3

save
box arrow
info
1.2.1.3
get get
box info arrow info
1.2.13.1 1.2.1.3.2
get get get get
inputs outputs controls mechanisms
1.2.1.3.2.1 1.2.1.3.2.2 1.2.1.3.2.3 1.2.1.3.24
get single get double %Z;(;iouble
head input head input in/w slash
1.2.1.3.2.1.1 1.2.1.3.2.1.2 1.2.1.3.2.1.3

Figure B.2. Save Box Arrow Info(Module 1.2.1.3)

B-4

get

outputs

1.2.1.3.2.2

get single
head output

get double

head out/con

get double

head out/in

get Eouble

head output

1.2.1.3.2.2.1 1.2.1.3.2.2.2 1.2.1.3.2.2.3 1.2.1.3.2.2.4
Figure B.3. Get Outputs(Module 1.2.1.3.2.2)
get
controls
1.2.1.3.2.3
get single get double get double
head control head control head con/slash
1.2.1.3.2.3.1 1.2.1.3.23.2 1.2.1.3.2.33

B-5

Figure B.4. Get Controls(Module 1.2.1.3.2.3)

Translate

Boundary
1.2.2
get save save
parent null boundary
box boundary info
1.2.2.1 1.22.2 1.2.2.3
search get
boundary boundary
lines line labels
1.2.2.3.1 1.2.2.3.2

Figure B.5. Translate Boundary(Module 1.2.2)

B-6

Save

store
predicates

1.2.3.2

traverse
boxes

1.2.3.2.2

Diagram
1.2.3
get
file name
1.2.3.1
save
header info
1.2.3.2.1
get save box
a box arrow info
1.2.3.2.2.1 1,2.3.2.2.2

boxes
arrows

1.2.3.2.2.3

Figure B.6. Save Diagram(Module 1.2.3)

-3

Appendix C. Data Structures of SAtool

Introduction

The purpose of this appendix is to discuss of the Data Structures of SAtool
developed by Steven E. Johnson (9). A discussion of the data structures of the
SAtool is needed because this thesis work should interface with the SAtool and use
the IDEF, diagrams and files generated by the SAtool. The SAtool allows users to
interactively create and edit IDEF, diagrams and to automatically produce the data

dictionary information.

Duata Structure

Five primary data structures were designed to hold all the graphics and data
dictionary information: the box structure, the line structure, the squiggle line struc-

ture. the header structure, and the footnote structure (9:4-11 - 4-14).

The box structure contains the information which is necessary to locate. name.
and enumerate activity boxes (9:4-11). The activity boxes in the IDEF, diagram are
hooked by the linked list. The box structure uses two C pointers one for the next box

structure and the other for pointing an activity data dictionary structure (9:4-11).

The line structure consists of the fields which are necessary to lacate, label.
draw the lines, enumerate the lines to identify them, store the ICOM labels, and store
the TO/FROM ALL labels (9:4-11 - 4-12). The line structure uses two numbers to
identify the type of each end of the line (ie. arrowhead. tunnel. dot, turn right. or
branch left, etc.) and uses C' pointers to store the lines in binary trees with the root
nodes (9:4-12). Figure C.1 shows four groups of the lines and the corresponding
linked list structure is presented in Figure C.2 (9:4-12 - 4:13). The tree arrangement
in Figure A.2 maps to how the line segments actually connect to one another and

C pointer supports the simple recursive functions used to traverse the binary trees

C-]

Figure C.1. Example Group of lines (9:4-12)

(9:4-12). The line structure uses another C pointer to point to a data divtionary

information for a data element.

The squiggleline structure contains the information which is necessary to locate

and to identify each squiggle line in the IDEF; diagram (9:4-13). The squiggle line

structure uses a C pointer to store the squiggle lines for a particular IDEF, diagram
in a single linked list (9:4-13 - 4-14).

The header structure consists of seven fields which are needed to draw, locate.
and classify AUTHOR, DATE, PROJECT, REV, NODE, TITLE, and NUMBER
of an IDEF, diagram(9:4-14 - 4-153). A single C pointer is used to save the header

information since each IDEF, diagram only has one header (9:1-14).

Finally, the footnote structure contains the information which is needed to
draw, locate and identify a matched pair of footnote labels (9:4-14). A C pointer is
defined to point another footnote structure since the footnote structures for a IDEF,

diagram are stored in a single linked list (9:1-14).

Figure C.2. The Linked List for Lines (9:4-13)

Summary

In this appendix, the data structure of the SAtool which is necessary to perform
this thesis investigation was addressed from Johnson’s effort. This information was

used throughout this thesis effort.

C-3

Appendix D. User’s Manual

User’s Manual introduces the basics of the ISES. The purpose of this man-
ual provides a broad understanding of the ISES’s operation, then provides a more

detailed example for learning to use the ISES.

D-1

Appendix D.

Table of Contents

Page

User’s Manual D-1
Table of Contents D-2
Listof Figures D-3
Introduction oL D-4
The Mouse D-3
How todraw lineswell D-5
Getting Started Lo L. D-6
Examples D-10

List of Figures

Figure Page

D.1 Test IDEFg Diagram D-11

D-3

Introduction

The IDEF, Syntax Expert System(ISES) is an interactive syntax check system.
It provides a means for checking IDEF, syntax in any IDEF, diagrams drawn by
SAtool and, producing error messages, error recovery, and editing suggestions. ISES
allows the user to select a menu for drawing an IDEF, diagram and checking IDEF,

syntax. The functions of the main menus include:

o RECALL DGM - read in a previously saved IDEF, diagram.

EDIT DGM - edit an IDEF, diagram according to its attribute menus.

e EDIT DD - edit a data dictionary.

EDIT FPT - edit a facing page text.

MISC FUNC - save a diagram, change directory, exit SAtool, etc.

SAVE DGM - save a graphics information and a data dictionary information.

o CHECK SYNTAX - check IDEY, syntax.

The first six menus are for drawing IDEF, diagrams, generating Data Dictionary
information, and Facing Page Text and the last one is for ISES to check IDEF,
syntax. A detailed guide for drawing IDEF, diagram is available in the user’s man-

ual of Johnson’s thesis (9). This User’'s Manual focuses on the CHECK SYNTAX

T™ ™ TA 1
3 4 S

part. ISES runs on Sun and Sun workstations using the SunO and the
SunView”™ window-based environment. This manual explains how CHECK SYN-
TAX can be used to check IDEF, syntax. Some previous familiarity with IDEF,
syntax and SAtool is required. Though not necessary, some familiarity with SunOS
and SunView is helpful. Users should be thoroughly familiar with the concepts

presented in this manual before using ISES.

YSunOSTM is a trademark of Sun Microsystems, Inc.

D-4

The Mouse

To move the cursor, place the mouse on its pad and move it in the desired
direction. During the execution of SAtool, User is required to click the mouse button.
All mouse button inputs should be clicked on the proper location in IDEF, diagram,

otherwise, the mouse button inputs are ignored.

o Right Button

The right button is used almost to abort operation of menu selected.

o Middle Button
The middle button is used to exit SAtool (see Exit SAtool).

e Left Button

The left mouse button is used to select one of menus and to start a menu

operation.

How to draw lines well

Almost of the unnoticed errors are produced in the field of drawing lines. They

provide a menas of generating unsuitable predicate data forms.

1. Boundary lines

o All boundary lines should have their ICOM labels.

o All arrows of Inputs, Mechanisms, and Controls must be touched on any
box. The segment of lines inside an activity box is truncated automati-
cally.

e All output lines should be begun inside an activity box.

2. Inter activity box lines
Every starting and ending point of the line segments should be begun and

ended inside an activity box excepting the branch, join lines, and TO/FROM

lines.

D-5

Getting Started

o

Set your UNIX path variable to include the ISES executable directory.

. Enter ”suntools”

enter SunView and SunWindow environment.

Enter ”"SAtool”

enter the IDEF, Diagram Translator environment.

The Main Menu

Menus are displayed as the oval forms on the screen.

Move the cursor to one the following choices to select:
e RECALL DGM

EDIT DGM

EDIT DD

EDIT FPT

MISC FUNC

SAVE DGM

CHECK SYNTAX

IDEF, diagram
By selecting one of the first five menus, The user is able to draw a new IDEF,

diagram or update the previous IDEF, diagram.

IDEF, Syntaz
After drawing an IDEF, diagram, select CHECK SYNTAX oval by clicking the
left mouse button on it. Now, three attribute submenus are displayed as the

rectangular forms. Move the cursor to on. of the following choices to select:

o Activity

D-6

e Boundary

o Save(.pro)

IDEF, syntax consists of Activity and Boundary IDEF, syntax.
6. Activity IDEF, syntax

After clicking the left button on Activity rectangular box of the submenus,

(a) Move the cursor inside a box to be checked and click the left mouse button

(Right - ABORT).
(b) Enter the Prolog environment using another window.
7. Boundary IDEF, Syntaz
NOTE: User must have the predicate file of the parent IDEF, diagram.
(a) After clicking the left button on Boundary rectangular box of menus,

(b) move the cursor inside the input window and enter the file name with the

parent activity box information (Right-ABORT).

(c) Enter the Prolog environment using another window.
8. Saving the predicate file

(a) After clicking the left mouse button on "save(.pro)” rectangular box of

menus,

(b) miove the cursor inside the input window, and then enter the file name
for the current IDEF, diagram. This file is a set of predicate data forms
translated from the graphical information in the IDEF, diagram. It is
used to check Boundary IDEF, syntax. The extension of the predicate

file is a .pro.

9. Prolog Environment

Enter "prolog”. This invokes the Prolog interpreter.

D-7

(a)

(b)

Enter ”[’ISES’].” - consult ISES.

Now, the following message is showed:

/***/

/* */
/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS x/
/* */
/* I. Type start. to begin a new session. x/
/* II. Answer all questions using lower case and ending withx/
/* a period. */
/* */
/* III1. Type halt. to exit Prolog session. */
/* */

/***/

Enter ”start.” to begin checking IDEF, syntax of a clicked box in the

current IDEF, diagram. Then, the message:

” At

Question: Do you want verbose operation(y./n.)? is displayed. Enter "y.

or "n.”. In sace of ”y.”, the list of rules fired are shown and in case of

"n.”, only the IDEF, syntax messages are displayed. (See Examples).

After then, the following message is shown on the screen:

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES 7

To check ACTIVITY BOX -> Enter a.

To check BOUNDARY ARROWS -> Enter b.

To have HELP MESSAGES -> Enter h.
Choice :
If checking Activity IDEF$_{0}$ syntax, enter "a.",
checking Boundary IDEF$_{0}$ syntax, enter "b.", or
wishing Help Message, enter "h.".

D-8

10.

11.

13.

14.

IDEF, Syntar Message
According to selection above description, the resulting messages of the IDEF,

syntax checking procedure are displayed (see Examples).

Trace

The message, Question: Do you wish to see how this answer was arrived at
(y./n.)? is followed by the resulting messages. Enter "y.” or "n.”. ”y.” means
that the trace regarding the IDEF, syntax message derived is displayed and

"n.” skips (see Examples).

Save Working Memory
Then, the message, Questiorn: Do you wish to save the current working memory

”

in a file (y./n.)? is displayed. Enter ”"y.” or "n.”. In the case of "y.”, the

current working memory is saved in a file which is specified by the user and of

»

n.”, the current working memory is erased automatically.
Ezrit Prolog Fnvironment
By entering "halt.” or "ctri ¢”, prolog scssion is ended.

Ezit SAtool
To exit SAtool, click the left mouse button on the "MISC FUNC” oval of the
main menus. And then click the left mouse button on the "QUIT” under the

"MISC FUNC?” oval. Finally, click the middle button of the mouse.

D-9

FEzamples

This section presents the actual demonstrations for checking process of the
correct IDEF, diagram, however, the checking process about the IDEF, diagram

with errors is the same as the correct case.

D-10

——

AUTHOR : Intaek Kim DATE: 13/82/90 |READER
PROJECT : testc2 REV:1.8 DATE
con con2
Ini . Make Ex outl
R ample
ing out2
Mechanisml
NDgE: TITLE: Make Example NUMBER: (-1
A
AUTHOR : Intaek Kim DATE :089/81/98{READER
PROJECT : testcB21 REV: 1.8 DATE
conl con2
Ct c2
box1
Ini
Inl out2_{1n2
1
. | bax2 outl -
in2 1 01
12 . - ~in3 outd/cond
L 2|
ird
box3
out2
02
. 3
Mechanismq
M1
NODE : ITITLE: Make Example NUMBER: C-2
Al

Figure D.1. Test IDFFy Diagram

D-11

ares> prolog

Quintus Prolog Release 2.4.2 (Sun-4, Sun0S 4.0)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

} ?- ["ISES’].
(consulting /usr2/eng/ikim/SAtoolExpert/ISES...]
R e P e R TRy

/* */
/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS x/
/* */
/* I. Type start. to begin a new session. */
/* */
/* II. Answer all questions using lower case, ending with x/
/* a period. */
/* */
/* III. Type halt. to exit prolog session. x/
/* */

[AR AR AR A KA KK KKK KKK Kok K R KR KK ok ok [
[ISES consulted 1.367 sec 19,008 bytes]
yes

| 7- start.
Question: Do you want verbose operation(y./n.)? n.

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES ?

To check ACTIVITY BOX -> Enter a.
To check BOUNDARY ARROWS -> Enter b.
To have HELP MESSAGE -> Enter h.

Choice : a.

[*%exxikexxkxxxx IDEFO Syntax Messages ook ook ok ok ok ok ok ok ok f

Name --> CORRECT: Activity Name is OK.
Input --> CORRECT: Input is OK.
Qutput --> CORRECT: Output is OK.

D-12

Control --> CORRECT: Control is OK.
Mechanism -=-> CORRECT: Mechanism is OK.

Number --> CORRECT: Activity number is OK.
This activity must be the top most level box.

Question: Do you wish to see how this answer
wvas arrived at(y./n.)? n.

[Rkkorddokkkkkokkokkkx 11 WARNING 1! D sokokakokokaok ok kokokokok ook ok ok ok /
/* After this session, all working memory elements will */
/* be erased except for elements being protected by */

/* keep statements in the knowledge base. */
/**l

Question: Do you wish to save the current working memory
in a file(y./n.)? n.

D-13

30k sk o ko o o oo o o o R o o K K K K oK KoK o 3K oo K 3 K KK A KK K KK R R K Kk]

/* */
/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS */
/* */
/¥ I. Type start. to begin a new session. x/
/* */
/* II. Answer all questions using lower case, ending with */
/* a period. x/
/* */
/* 1I11. Type halt. to exit prolog session. */
/* x/

A o oK o A oK KKK K o ook o o K K K O oK KK KKKk K R KK Kk ok ok

yes
| 7- start.
Question: Lo you want verbose operation(y./n.)? y.

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES ?

To check ACTIVITY BOX ~> Enter a.

To check BOUNDARY ARROWS ~> Enter b.

To have HELP MESSAGE ~> Enter h.
Choice : a.

[**kdxkkxxkexxkxx JDEFO Syntax Messages Aok ok ok Kok Rk k ok ok

Trying rulel:: [Name, , -=> ERROR: No Activity Name.

Each box must have an activity name]
Trying rule2:: (Name, , --> CORRECT: Activity Name is OK]
Proved rule2:: [Name, , --> CORRECT: Activity Name is 0K]
Name --> CORRECT: Activity Name is OK.

Trying rule3:: [Input, , --> CORRECT: No Input Arrows, however,
Input is OK]

Trying rule4:: [Input, , --> ERROR: No Input Label
Each Input arrow must have an input label]

Trying rule5:: [Input, , --> RECOMMEND:
You would better reduce the number of Input arrows
from 0 to 5]

Trying rule6:: [Imput, , --> CORRECT: Input is O0K]

Proved rule6:: [Input, , --> CORRECT: Input is 0K]

D-14

Input
Trying

Trying
Trying
Trying
Proved

Output
Trying

Trying
Trying
Trying
Proved

Control
Trying

Trying
Trying
Trying
Proved

Mechani
Trying

Proved

Number

--> CORRECT: Input is OK.

rule7:: [Output, , --> ERROR: You should have at least
one output arrow)
rule8:: [Qutput, , --> ERROR: No Output Label.
Each Output Arrow should have an output Label]
rule9:: [Qutput, , --> RECOMMEND:

You would better reduce the numbter of COutput arrows
from 1 to 5]
rule10:: [Output, , =--> CORRECT: Output is OK]
rulel0:: [Dutput, , --> CORRECT: Output is O0K]

--> CORRECT: Output is OK.

ruleli:: [Control, , --> ERRCOR: You should have at least

one control arrow]
rule12:: [Control, , --~> ERROR: No Control Label.

Each Control Arrow should have a control Labell]
rulei3:: [Control, , =--~> RECOMMEND:

You would better reduce the number of Control arrows

from 1 to 5]

rulel4d:: [Control, , --> CORRECT: Control is OK]
rulel4:: [Control, , --> CORRECT: Control is 0K]

-=-> CORRECT: Control is OK.
rulel5:: [Mechanism, ,-~> ERROR: No Mechanism Label.
Each Mechanism Arrow should have a mechanism Label]
rulel6:: [Mechanism, ,--> CORRECT: No Mechanism Arrows, however,
Mechanism is OK]
rulel7:: [Mechanism, ,-~> RECOMMEND:
You would better reduce the number of Mechanism arrows
from 0 to 5]
rulei8:: [Mechanism, ,--> CORRECT: Mechanism is 0K]
rulel18:: [Mechanism, ,--> CORRECT: Mechanism is 0K]

sm --> CORRECT: Mechanism is OK.
rulei9:: [Number, , =--> CORRECT: Activity number is OK.

This activity must be the top most level box]
rule19:: [Number, , --> CORRECT: Activity number is OK.

This activity must be the top most level box]

--> CORRECT: Activity number is OK.
This activity must be the top most level box.

D-15

Question: Do you wish to see how this answer

GOAL::
GOAL::
GOAL::
GOAL:
GOAL::
GOAL::

..

vas arrived at(y./n.)? y.
[Name, , --> CORRECT: Activity Name is 0K]
{(Input, , --> CORRECT: Input is OK]
[Output, , =--> CORRECT: Output is OK]
[Control, , =--> CORRECT: Control is 0K]
(Mechanism, ,--> CORRECT: Mechanism is QK]
[Number, , --> CORRECT: Activity number is OK.

This activity must be the top most level box]

rulei9:: [Number, , --> CORRECT: Activity number is OK.

This activity must be the top most level box] Was Derived From
{title,is,Make Example] AND
[Make Example,number_is,0] AND
[O'==’O]

SOLVED:: [0,==,0]

TOLD::
TOLD::

[Make Example,number_is,0]
[title,is,Make Example]

rulei8:: {Mechanism, ,--> CORRECT: Mechanism is 0K] Was Derived From

[activityname,is,Make Example]

KNOWN:: was_told:: [activityname,is,Make Example]

rulei4:: [Control, , --> CORRECT: Control is OK] Was Derived From
[activityname,is,Make Example]

KNOWN:: was_told:: [activityname,is,Make Example]

rulei0:: [Output, , --> CORRECT: Output is O0K] Was Derived From
{activityname,is,Make Example]

KNOWN:: was_told:: [activityname,is,Make Examplel

rule6:: [Input, , --> CORRECT: Input is 0K] Was Derived From
[activityname,is,Make Examplel

KNOWN:: was_told:: [activityname,is,Make Example]

rule2:: [Name, , --> CORRECT: Activity Name is 0K] Was Derived From

{activityname,is,Make Example] AND
(Make Example,\==,]

SOLVED:: [Make Example,\==,]

TOLD::

[activityname,is,Make Example]

[Fxxnsmnngsnkekrknt 1 WARNING ! D akorsoksoor ok kok koo ok /
/* After this session, all working memory elements will */
/* be erased except for elements being protected by */
/* keep statements in the knowledge base. */
J LT L e L T T L e L I Iy

Question: Do you wish to save the current working memory
in a file(y./n.)? y.

D-16

Please cupply a filename: ’example.wm’.

D-17

/***/

/*

/* WELCOME TO I
/*

/* I. Type start.

/*

/* II. Answer all questi
/* a period.

/*

/* III. Type halt.

/*

DEFO SYNTAX EXPERT SYSTEMS
to begin a new session.

ons using lower case, ending with

to exit prolog session.

*/
*/
*/
x/
*/
*/
*/
*/
*/
*/

/***/

yes
| 7- start.
Question: Do you want v

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS

or to have HE
To check ACTIVI
To check BOUNDA

To have HELP ME
Choice : b.

[akkkkkkkkkkkkkk IDEFO
Boundary Input -=>

Boundary Output -=>

Boundary Control ~-=>

Boundary Mechanism ~->

Question: Do you wish t

erbose operation(y./n.)? n.

LP MESSAGES 7
TY BOX -> Enter a.

RY ARROWS -> Enter b.
SSAGE -> Enter h.

Syntax Messages *xkxkkkkkkickikk/
CORRECT: Boundary Input is OK.

CORRECT:
Boundary Output is OK.

CORRECT: Boundary
Control is OK.

CORRECT: Boundary
Mechanism is OK.

o see how this answer

D-18

was arrived at(y./n.)? n.

[xxdrskkikkkiorkkk] 1 WARNING |11 msrkkkaokdksiorkdkkkdkiokk/
/* After this session, all working memory elements will x/
/* be erased except for elements being protected by */

/* keep statements in the knowledge base. */
[0k s KK K Ko oK o oo o o o ok R o oK o oo Kk o o o o ok ko ok ok /

Question: Do you wish to save the current working memory
in a file(y./n.)? n.

D-19

/***/

/% */
/* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS */
/+ */
/* I. Type start. to begin a new session. */
/* */
/* 1I. Answer all questions using lower case, ending with */
/* a period. */
/* */
/* 1II. Type halt. to exit prolog session. */
/* */

/***/

yes
| 7- start.
Question: Do you want verbose operation(y./n.)? y.

Question: Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS
or to have HELP MESSAGES ?

To check ACTIVITY BOX -> Enter a.

To check BOUNDARY ARROWS -> Enter b.

To have HELP MESSAGE -> Enter h.
Choice : b.

[xdikarresxkrk IDEFO Syntax Messages *¥xkxkkkikikkkx/

Trying rule2:: [Boundary Input, , =--> !!! THIS IS A FATAL ERRGR :!!]

Trying ruleil:: [boundarysarule,is,stalled]

Trying rule6:: [Boundary Input, , --> ERROR: No boundary input label]

Trying rule7:: [Boundary Input, ,--> ERROR: Parent Input has no labell

Trying rule8:: [Boundary Input, ,--> ERROR: The number of Input
arrow(s) of Parent Activity box is greater than that of
Boundary Input arrow(s) -- Must have the same number]

Trying rule9:: [Boundary Input, , -=> ERROR: The number of Input
arrow(s) of Parent Activity box is less than that of
Boundary Input arrow(s) -- Must have the same number]

Trying rule10:: [Boundary Input, , -~> RECOMMEND:

You would better reduce the number of arrows to six

below]
Trying ruleii:: [Boundary Input, , --> CORRECT: Boundary Input is O0K]
Trying rulei3:: [Boundary Input, , -~> CORRECT: Boundary Input is 0K]

D-20

Trying rule12:: [case_of_boundary_in,is,1]
Trying rulei4:: [Boundary Input, , --> CORRECT: Boundary Input is 0K]
Trying rulel12:: [case_of_boundary_in,is,?2]
Proved rulei12:: [case_of_boundary_in,is,2]

Proved rulei4:: [Boundary Input, , --> CORRECT: Boundary Input is OK]
Boundary Input -=-> CORRECT: Boundary Input is OK.
Trying rule3:: [Boundary Output, , -->

There is nothing about Parent activity]
Trying rulei:: [boundarysarule,is,stalled]
Trying rulei19:: [Boundary Output, ,--> ERROR: Nz boundary output label]
Trying rule20:: [Boundary Output, , --> ERROR:
Parent Output has no labell
Trying rule21:: [Boundary Output, ,--> ERROR: No boundary output arrow.
Should have at least one boundary output arrow]

Trying rule22:: [Boundary Output, , -=> ERROR: No parent output arrow.
Should have at least one parent output arrow]
Trying rule23:: [Boundary Output, , -=> ERROR: The number of Output
arrow(s) of Parent Activity box is greater than that of
Boundary Output arrow(s) -- Must have the same number]
Trying rule24:: [Boundary Output, , --> ERROR: The number of Output
arrow(s) of Parent Activity box is less than that of
Boundary Output arrow(s) -- Must have the same number]
Trying rule25:: [Boundary Output, , --> RECOMMEND:
You would better reduce the number of arrows to six
below]
Trying rule27:: [Boundary Output, , --> CORRECT:

Boundary Output is OK]
Trying rule26:: [case_of_boundary_out,is,1]
Trying rule28:: [Boundary Output, , --> CORRECT:
Boundary Output is O0K]
Trying rule26:: [case_of_boundary_out,is,2]
Proved rule26:: [case_of_boundary_out,is,2]
Proved rule28:: [Boundary Output, , ~--> CORRECT:
Boundary Output is OK]

Boundary Output --> CORRECT:
Boundary Output is OK.

Trying rule4:: [Boundary Control, , =->
Maybe you have tried to check syntax with

a file without PARENT ACTIVITY BOX information]
Trying rulei:: [boundarysarule,is,stalled]
Trying rule33:: [Boundary Control, ,--> ERROR: No boundary control labell
Trying rule34:: [Boundary Control, ,--> ERROR: Parent Control has no label]

Trying rule35:: [Boundary Control, , =--> ERROR: No boundary control arrow.

D-21

Should have at least one boundary control arrow]

Trying rule36:: [Boundary Control, , --> ERROR: No parent control arrow.
Should have at least one parent control arrow)
Trying rule3d7:: [Boundary Control, , --> RECOMMEND:
You would better reduce the number of arrows to six
below]

Trying rule39:: [Boundary Control, , =--> CORRECT: Boundary
Control is OK]

Trying rule38:: [case_of_boundary_con,is,1]

Trying rule40:: [Boundary Control, , --> CORRECT: Boundary
Control is OK]

Trying rule38:: [case_of_boundary_con,is,2]

Proved rule38:: [case_of_boundary_con,is,2]

Proved rule40:: [Boundary Control, , --> CORRECT: Boundary
Control is OK]

Boundaxry Contrel --> CORRECT: Boundary Control is OK.
Trying ruleS5:: [Boundary Mechanism, ,--> PLEASE START AGAIN !'!!]
Trying rulel:: [boundarysarule,is,stalled]

Trying rule45:: [Boundary Mechanism, ,--> ERROR:

No boundary mechanism label]
Trying rule46:: [Boundary Mechanism, ,--> ERROR:

Parent Mechanism has no label]
Trying ruled7:: [Boundary Mechanism, ,--> ERROR: The number of
Mechanism arrow(s) of Parent Activity box is greater than that

of Boundary Mechanism arrow(s) -- Must have the same
number]
Trying ruled48:: [Boundary Mechanism, ,--> ERROR: The number of

Mechanism arrow(s) of Parent Activity box is less than
that of Boundary Mechanism arrow(s) -- Must have the same

number]

Trying rule49:: [Boundary Mechanism, ,--> RECOMMEND:
You would better reduce the number of arrows to six
below]

Trying rule50:: [Boundary Mechanism, ,--> CORRECT: Boundary

Mechanism is 0K]

Trying rule52:: [Boundary Mechanism, ,--> CORRECT: Boundary
Mechanism is 0K]

Trying ruleSi:: [case_of_boundary_mech,is,1]

Proved ruleS51:: [case_of_boundary_mech,is,1]

Proved rule52:: [Boundary Mechanism, ,--> CORRECT: Boundary
Mechanism is 0K]

Boundary Mechanism --> CORRECT: Boundary
Mechanism is OK.

D-22

Question: Do you wish to see how this answer
was arrived at(y./n.)? y.

GOAL:: (Boundary Input, , --> CORRECT: Boundary Input is OK]
GOAL:: [Boundary Output, , --> CORRECT:

Boundary Output is O0K]
GOAL:: [Boundary Control, , --> CORRECT: Boundary

Control is OK]
GOAL:: (Boundary Mechanism, ,--> CORRECT: Boundary
Mechanism is 0K]
rule52:: [Boundary Mechanism, ,--> CORRECT: Boundary
Mechanism is OK] Was Derived From
[case_of_boundary_mech,is,1] AND
[child_title,is,Make Example] AND
(Make Example,mechanism_is,Mechanism1] AND
[boundary_mechanismi,is,Mechanismi]
TOLD:: [boundary_mechanismi,is,Mechanismi]
TOLD:: (Make Example,mechanism_is,Mechanismi]
KNOWN:: was_told:: [child_title,is,Make Example]
rule51:: [case_of_boundary_mech,is,1] Was Derived From
[boundary_mechanism,has_number,1] AND
[child_title,is,Make Example] AND
[Make Example,has_mechanism_number,1]
TOLD:: [Make Example,has_mechanism_number,1]
KNOWN:: was_told:: [child_title,is,Make Example]
TOLD:: [boundary_mechanism,has_number,1]
rule40:: [Boundary Control, , =--> CORRECT: Boundary
Control is 0K] Was Derived From
[case_of _boundary_con,is,2] AND
[boundary_controll,is,con1] AND
[boundary_control2,is,con2] AND
[child_title,is,Make Example] AND
[Make Example,control_is,coni] AND
{Make Example,control_is,con2]
TOLD:: [Make Example,control_is,con2]

TOLD:: [Make Example,control_is,coni]

KNOWN:: was_told:: [child_title,is,Make "xample]
TOLD: : [boundary_control2,is,con2]

TOLD:: [boundary_controll,is,coni]

rule38:: [case_of_boundary.con,is,2] Was Derived From
[boundary_control ,has_number,2] AND
[child_title,is,Make Example] AND
(Make Example,has_control_number,2]

D-23

TOLD:: [Make Example,has_control_number,2]
KNOWN:: was_told:: [child_title,is,Make Example]
TOLD:: [boundary_control,has_number,2]
rule28:: [Boundary Output, , -~> CORRECT:
Boundary Output is O0K] Was Derived From
[case_of_boundary_out,is,2] AND
[boundary_outputi,is,outi] AND
[boundary_output2,is,out2] AND
[child_title,is,Make Example] AND
[Make Example,output_is,outi] AND
[Make Example,output_is,out2]
TOLD:: [Make Example,output.is,out2]
TOLD:: [Make Example,output_is,outi]
KNOWN:: was_told:: [child_title,is,Make Example]
TOLD:: [boundary_output2,is,out2]
TOLD:: [boundary_outputl,is,outl]
rule26:: [case_of_boundary_out,is,2] Was Derived From
[boundary_output,has_number,2] AND
[child_title,is,Make Example] AND
[Make Example,has_output_number,2]
TOLD:: [Make Example,has_output_number,2]
KNOWN:: was_told:: [child_title,is,Make Example]
TOLD:: [boundary_output,has_number,2]
rulel4:: [Boundary Input, , --> CORRECT: Boundary Input is OK]
Was Derived From
[case_of _boundary_in,is,2] AND
[boundary_inputil,is,in2] AND
[boundary_input2,is,Ini] AND
[child_title,is,Make Example] AND
[Make Example,input_is,in2] AND
[Make Example,input_is,Ini]
TOLD:: [Make Example,input_is,In1]

TOLD:: [Make Example,input_is,in2]
KNOWN:: was_told:: [child_title,is,Make Example]
TOLD:: [boundary_input2,is,Int]

TOLD:: [bowndary_inputi,is,in2]

rule12:: {case_of_boundary_in,is,2] Was Derived From
[boundary_input,has_number,2] AND
[child_title,is,Make Example] AND
[Make Example,has_input_number,2]

TOLD:: [Make Example,has_input_number,2]
TOLD:: [child_title,is,Make Example]
TOLD:: [boundary_input,has_number,2]

D-24

Jaxexknrokkidokkiook ! 18 WARNING ! Uakaokokaokok sk koo tok ddokokokokkok [/
/* After this session, all working memory elements will */
/* be erased except for elements being protected by */

/* keep statements in the knowledge base. */
ARk Rk R KRR R R R R RO KA K

Question: Do you wish to save the current working memory
in a file(y./n.)? n.

D-25

/#*****#**/

/*
/%
/*
/*
/*
/*
/*
/*
/*
/*

WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS

II. Answer all questions using lower case, ending with

I. Type start.
a period.
I1I. Typse

halt.

to begin a new session.

to exit prolog session.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*******************************#*****************************l

yes

| ?7- halt.
ares>

D-26

Appendix E. Programmer’s Guide

Programmer’s Guide introduces several topics of interest to ISES programmers

and developers.

E-1

Appendix E.

Table of Contents

Page

Programmer’s Guide E-1
Table of Contents E-2
Listof Figures E-3
Introduction Lo E-4
Software Documentation E-4
Make File. oo E-6
Files produced by IDT E-6
I ¢ < J E-6
CHECKBOX.PRO E-7
CHECKBOUNDARY.PRO E-7

E-2

Figure

E.l
E.2.
E.3.
E4.
E.5.
E.6.

List of Figures

Contents of Makefile

Example of IDEF, Diagram

Predicate Data File Produced by Save (.pro) (parent)
Predicate Data File Produced by Save (.pro) (child)

Predicate Data File Produced by Activity
Predicate Data File Produced by Boundary

Page

E-6
E-8
E-9
E-10
E-11
E-12

Introduction

The focus of this thesis effort was to design and implement an application of
expert system formulation for checking IDEF, syntax of IDEF, diagrams as derived
from SAtool. The work in this thesis is divided into two major ctegories: IDEF,
Diagram Translator and IDEF, Syntax Expert System. The IDEF, Diagram Trans-
lator translates the IDEF, diagrams into a set of predicate forms and the predicate
forms file is used as the data base of the IDEF, Syntax Expert System. The IDEF,
Syntax Expert System checks the IDEF, syntax of IDEF, diagrams. The objective
of this appendix is to specify the procedure for generating the executable files and

to outline some basic concepts of the translator and expert system.

Software Documentation

The existing source code is fully documented in AFIT System Development
Documentation Guidelines and Standards (8). The following list shows the file

header of the source codes.

e DATE: Date of current version number.

e VERSION: Current version number.

o TITLE: Title for this file.

o FILENAME: File name for the module.

e DESCRIPTION: Description of the module’s function.

e AUTHOR: Name of one who responsible for this file.

e PROJECT: Name of the software project of which this file is a part.

e OPERATING SYSTEM: Name and version number of operating system under

which this file was written.
o LANGUAGE: Name of language used for source code.
e FILE PROCESSING: How the file is used.

E-4

o CONTENTS: Modules contained in the file.

e HISTOKY: List of major changes to the file.
The following list presents the subroutine header of the source codes.

o DATE: Date of the module.

o VERSION: Current version number.

o NAME: Module name.

e MODULFE NUMBER: Module number of current program.

e DESCRIPTION: Text description of the module’s function.

o ALGORITHM: Algorithm used.

e PASSED VARIABLES: Variables passed to the module.

e RETURNS: Value returned by the medule.

e GLOBAL VARIABLES USED: Variables read by the module.
e GLOBAL VARIABLES CHANGED: Variables changed by the module.
o FILES READ: Files read by the module.

e FILES WRITTEN: Files written by the module.

¢ HARDWARE INPUT: 1/0 ports read.

o HARDWARE OUTPUT: 1/O ports read.

e MODULES CALLED: Other procedures called.

o CALLING MODULES: What modules call.

o AUTHOR: One who wrote this module.

e HISTORY: List of major changes to the module.

E-5

OBJECTS = main.o dataddict.o messages.o boxfunctions.o
headerfunctions.o editboxfunc.o
miscfunctions.o ddsearchfuncs.o
endfuncs.o find.o morelinefuncs.o
linelabel.o moreddfuncs.o ddsearchfuncs.o
savefuncs.o
fptfuncs.o sqglefuncs.o fnotefuncs.o
moresave.o screendump.o readfuncs.o
session.o syntaxfuncs.o

HEADERS = globals.h

ALL = sad

CFLAGS = -0

LIBS = -lsuntool -lsunwindow -lpixrect -lm

sad : $(OBJECTS)

cc $(CFLAGS) $(OBJECTS) $(LIBS) -0 SAtool

Figure E.1. Contents of Makefile

Make File

The file of the IDEF; Diagram Translator is included in the files of the SAtool
because the IDEF, Diagram Translator was coded as a part of the SAtool under
the SunOSTM. The file name of source code for the IDEF,; Diagram Translator is
syntazfuncs.c. The executable file was produced by using the UNIX make utility.
Figure E.1 shows the contents of the Makefile file. The system command make causes

to be compiled and linked all together and generated the executable file, SAtool.

Files produced by IDT

* pro This file contains a set of predicate data forms into which the IDEF,
Diagram Translator translates the IDEF, diagram. The symbol * is a file name
which the user specifies. The extension of the file is added automatically. This file is
used to check the IDEF, syntax of boundary arrows in any IDEF, diagram. Figure
E.3 shows an example of the predicate data file translated from the above IDEF,

E-6

diagram shown in Figure E.2. Also, Figure E.4 shows an example of the predicate

data file from the below IDEF; diagram shown in Digure E.2.

CHECKBOX.PRO Thisfileis a temporary file which is created and overwrited
automatically. Also this file is used for checking the IDEF, syntaonf an activity box
which user specifies in any IDEF, diagram. Figure E.5 represents the predicate data

file of the activity box, boz1, which is clicked by the user in Figure E.2.

CHECKBOUNDARY.PRO This file contains the predicate data forms of the
boundary arrows and its parent activity box and is a temporary file which is created
and overwrited automatically. Also this file becomes the data base (working memory)
of the IDEF, Syntax Expert System. Figure E.6 shows the predicate data file of

boundary arrows in Figure E.2.

E-7

AUTHOR : Intaek Kim DATE :13/82/98|READER
PROJECT : testcd?2 REV: 1.8 DATE
con con2
Iny o/ Make Ex outl .
) ample
an2 out?
Mechanisml
NODE : ITITLE: Make Example INLMBER: C-1
AB
AUTHOR : Intaek Kim DATE:89/81/98(READER
PROJECT : testcB21 REV:1.8 DATE
conl conl
ct c2
box1
Int out2/in2
I1) =
o DOX2 Qutl —
1
in2 ind " out4/con3
12 2 -
ind
box3
out2
02
3
Mechanismtx
M1
NODE : [TITLE: Make Example NUMBER: C-2
Al

Figure E.2. Example of IDEF, Diagram

confirmed([title, is, ’'Make Example’]}).
confirmed([node, is, ’A0°’]).

confirmed([activityname, is, ’Make Example’]).
confirmed([’Make Example’,number_is,0]).
confirmed([’Make Example’,input_is,’In1’]).
confirmed([’Make Example’,input_is,’in2’]).
confirmed([’Make Example’, has_input_number, 2]).
confirmed([’Make Example’,output_is,’out1’]).
confirmed([’Make Example’,output_is,’out2’]).
confirmed([’Make Example’, has_output_number, 2]).
confirmed([’Make Example’,control_is,’con1’]).
confirmed([’Make Example’,control_is,’con2’]).
confirmed([’Make Example’, has_control_number, 2]).
confirmed([’Make Example’,mechanism_is,’Mechanismi’]).
confirmed([’Make Example’, has_mechanism_number, 1]).

Figure E.3. Predicate Data File Produced by Save (.pro) (parent)

confirmed([title, is, ’Make Example’]).
confirmed([node, is, ’A1’]).
confirmed([activityname, is, ’box1’]).
confirmed([’box1’,number_is,1]).
confirmed([’box1’,input_is,’in2’]).
confirmed({’box1’,input_is,’In1’]).
confirmed([’box1’, has_input_number, 2]).
confirmed([’box1’,output_is,’out2’]).
confirmed([’box1’, has_output_number, 1]).
confirmed([’box1’,control_is,’coni’])).
confirmed({’box1’, has_control_number, 1]).
confirmed([’box1’,mechanism_is,null]).
confirmed([activityname, is, ’box2’]).
confirmed([’box2’ ,number_is,2]).
confirmed([’box2’,input_is,’out2’]).
confirmed([’box2’,input_is,’in3’]).
confirmed([’box2’, has_input_number, 2]).
confirmed([’box2’,output_is,’in2’]).
confirmed([’box2’,output_is,’out1’]).
confirmed({’box2’,output_is,’out4’]).
confirmed([’box2’, has_output_number, 3]).
confirmed([’box2’,control_is, ’con2’])).
confirmed([’box2’,control_is,’con3’]).
confirmed([’box2’, has_control_number, 2]).
confirmed([’box2’ ,mechanism_is,null]).
confirmed([activityname, is, ’box3’]).
confirmed([’box3’,number_is,3]).
confirmed([’box3’,input_is,’in4’]).
confirmed([’box3’, has_input_number, 1]).
confirmed([’box3’,output_is,’out2’]).
confirmed([’box3’,output_is,’con3’]).
confirmed([’box3’, has_output_number, 2]).
confirmed([’box3’,control_is,'out4’]).
confirmed([’box3’, has_control_number, 1]).
confirmed([’box3’ ,mechanism_is,’Mechanismi’]).
confirmed([’box3’, has_mechanism_number, 1]).

Figure E.4. Predicate Data FI'ile Produced by Save (.pro) (child)

E-10

confirmed([title, is, ’Make Example’]).
confirmed([node, is, ’A1’]).
confirmed([activityname, is, ’box1’]).
confirmed([’box1’,number_is,1]).
confirmed([’box1’,input_is,’in2’]).
confirmed({’box1’,input_is,’In1’]).
confirmed([’boxi’, has_input_number, 2)).
confirmed([’box1’,output_is,’out2’]).
confirmed([’box1’, has_output_number, 1]).
confirmed({’box1’,control_is,’conl’]).
confirmed([’box1’, has_control_number, 1]).
confirmed([’box1’,mechanism_is,nulll).

Figure E.5. Predicate Data File Produced by Activity

confirmed([title, is, ’'Make Example’]).

confirmed([node,

is, 'A0’]).

confirmed([activityname, is, ’'Make Example’]).

confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([’Make
confirmed([?Make

confirmed([child_

Example’ ,number_is,0]).
Example’,input_is,’Ini’]).
Example’,input_is,’in2’]).
Example’, has_input_number, 2]).
Example’,output_is,’out1’]).
Example’,output_is,’out2’]).
Example’, has_output_number, 2]).
Example’,control_is,’con1’]).
Example’,control_is,’con2’]).
Example’, has_control_number, 2]).
Example’ ,mechanism_is, 'Mechanismi’]).
Example’, has_mechanism_number, 1]).
title, is, ’'Make Example’]).

confirmed([boundary_controlt, is, ’coni’]).
confirmed([boundary_outputl, is, ’outi’]).
confirmed([boundary_output2, is, ’out2’]).
confirmed([boundary_inputi, is, ’in2’]).
confirmed([boundary_control2, is, ’con2’]).
confirmed([boundary_input2, is, ’Ini’]).
confirmed([boundary_mechanisml, is, ’Mechanismi’]).
confirmed([boundary_input, has_number, 2]).
confirmed([boundary_output, has_number, 2]).
confirmed({boundary_control, has_number, 2]).
confirmed({boundary_mechanism, has_number, 1]).

Figure E.6. Predicate Data File Produced by Boundary

E-12

Appendix F. Source Code

The purpose of this appendix represents the source code which was imple-
mented during this thesis investigation. This appendix contains two main source
codes: one for IDEF, Diagram Translator, the other for IDEF, Syntax Expert Sys-

tem.

F-1

Appendix F.

Table of Contents

Source Code
Table of Contents
IDEF, Diagram Translator
IDEF, Syntax Expert System

Inference Engine
Activity IDEF, Syntax Rules
Boundary IDEF, Syntax Rules

F-2

.............

.............

.............

.............

Page

F-1
F-2

F-72
F-73
F-88
F-93

IDEFy Diagram Translator

The purpose of this section is to provide the source code documentation of
the IDEF, Diagram Translator. The documentation conformed to the software en-
gineering standards in AFIT’s System Development Documentation Guidelines and

Standards draft #4 (8).

F-3

/******************t***

DATE:
VERSION:

TITLE:

PROJECT:

AUTHOR:
HISTORY:

L IR K SR IR 2N TN NN JEE DR BN R R L B I I EEE B N BRI R T IR NN R K NN R R BEE K 2 R 2R R

FILENAME: syntaxfuncs.c

DESCRIPTION:
This file provides a means of translating the IDEFO diagram
into a set of predicate forms and generating the predicates
files as the data base of IDEFO Syntax Expert System.

OPERATING SYSTEM: UNIX 4.3
LANGUAGE:
FILE PROCESSING: Must compile with SAtool.

CONTENTS: check_input_abox(), single_headed_input(),

3 Feb 1990
1.0

IDEFO Diagram Translator

Al

c

double_headed_input(), double_headed_input_with_slash(),
check_output_abox(), single_headed_output(),
double_headed_output_with_control(),
double_headed_output_with_input(), double_headed_output()
check_control_abox(), single_headed_control(),
double_headed_control_with_slash(),
double_headed_control(), check_mechanism_abox(),
single_headed_mechanism(),search_labels_touched_abox(),
get_labels_for_abox(), save_arrow_info_of_atox(),
create_temp_box_info(), find_clicked_box(),
check_button_for_activity(), check_activity(),
create_temp_boundary_info(), check_parent_box_file(),
check_button_for_boundary(), check_boundary(),
save_null_boundary(), search_NLR_boundary_line_info(),
search_boundary_info(), save_boundary_line_info(),
save_header_info(), traverse_boxes(), store_predicates(),
overwrite_predicates(), get.filename_for_predicates()
save_predicates()

Intaek Kim

10/Jan/90 : Modify the print out format
02/Feb/90 : Add save_header_info()
04/Feb/90 : Add save_boundary_info()

LK T SR R NS I U R R BT S S T BT R T BT N R SR S R TR R T N SN B T S R R N S A

o K o o ok o o ok o oo ok ok o o o ook o o ok oo o ko ok ok ok ok o ok o o ok o ok ok ok ko kKo

#include <stdio.h>

#include <suntool/sunview.h>
#include <suntool/canvas.h>
#include <suntool/panel.h>

#include <suntool/textsw.h>
#include <sys/param.h>
#include "globals.h"

[¥ dkkdokkkkokkkkkkokkkokkk GLOBALS TO THIS FILE skksskskakkokokdokkokskkokiokokokdkkokkkskk [
int number _of _boundary_input, number_of_boundary_output;
int number_of_boundary_control, number_of_boundary_mechanism;
char last_file_name{FILE_NAME_LENGTH +5] = "";
struct text_line_struct *Line_labels;

ek ok s koo ook ol o o oK o s s ok o K o ok o o oo o o K K o 3 o o oo oo oA R R K K o R ko ok oKk ok

DATE: 15 Feb 1890
VERSION: 1.0

NAME: check_input_abox()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of generating a linked
list, Line_labels, with all information labels of input
arrows attatched on an activity box.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: Line_labels

GLOVAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT :None

MODULES CALLED: signle_headed_input(), double_headed_input()
double_headed_input_with_slash()

CALLING MODULES: search_labels_touched_abox()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE :

ORDER OF :
koo ok ok o ko Koo o o o o K oK K KK Ko AR ok KK R kKR sk Rk ok kol ok ok ok ok ok ok /

* X X H H A ¥ F ¥ F X K ¥ ¥ ¥ X F O X ¥ ¥ F ¥ F X * * *
¥ ¥ F X H K X OF X X OF OF O X ¥ ¥ K ¥ ¥ X O F X ¥ H X * *

void
check_input_abox(tem_line)
struct line_struct *tem_line;
{
extern struct text_line_struct *Line_labels;
extern add_to_inputs_tree();
char buf [DESCRIPTION_LINE_LENGTH+1];

single_headed_input(tem_line);
double_headed_input(tem_line);
double_headed_input_with_slash(tem_line);
return;

}

/********t***#*t********t**

* DATE: 25 Feb 1990
* VERSION: 1.0

NAME: single_headed_input()

MODULE NUMBER:

DESCRIPTION: This module provides a means of hooking the line
labels of input arrows with single head to a linked
list, Line_label.

ALGROTHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: box,line,Line_labels

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE CUTPUT: None

MODULES CALLED: get_closest_label(), get_branchnode(),

find_TO_ALL_branchnode(), find_branchnode(),
add_to_inputs_tree()

CALLING MODULES: check_input_abex?)

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:
A A KA O o o o R K K KKK oK K R R K K o oo o o o K Kk koK K ok oK ok ok Kok ok

LR N DR SR R IR BN NN B R BN R K N T BT K 2 2R K IR
L R SRR K IR K BT BN R S K T B R IR B R R S T I

single_headed_input(tem_line)
struct line_struct *tem_line;
{
extern get_closest_label(),get_branchnode(),find_TO_ALL_branchnode();
extern find_branchnode(),add_to_inputs_tree();
extern struct box_struct *box;
extern struct line_struct *line;
struct line_struct *original_line;
char buf [DESCRIPTION_LINE_LENGTH +1];
int original_line_type;

if(/* check if tem_line is touched on the left side of */
/* box with 10 deviation. */
(tem_line->end_position.x >= box->swcorner.x-10) &&
(tem_line->end_position.x <= box->swcorner.x) 73
(tem_line->end_position.y <= box->swcorner.y) 44
(tem_line->end_position.y >= box->swcorner.y-BOX_HT) &&
(/% check if tem_line has an end arrow */

F-7

(tem_line->end_activity_num & (ARROW_HEAD)) '= 0) &&
((tem_line->end_activity_num & (DOT_B_L|DOT_T_R)) == 0)) {

/* This tem_line is an input arrow for temp_box with some */
/* toralence, i.e. not require the line must be touched box */
/* so as to be an input arrow(single headed arrow). */

original line_type = get_branchnode(tem_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(get_closest_label(original_line,buf,tem_line->struct_type)
== MYTRUE)
{ /* tem_line has a line label */
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;

}
/* No line label on tem_line - Check if tem_line is a FROM_ALL x*/

/* type line. If so, search TO_ALL and its label */
if(original_line->start_activity_num == FROM_ALL) {
original_line = (struct line_struct *)
find_TO_ALL_branchnode(original_line->to_from_label);
original_line_type = get_branchnode(original_line);
original_line = (struct line_struct x)
find_branchnode(original_line_type);
if(get_closest_label(original_line,buf,line->struct_type)
== MYTRUE)
{
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
}
strcpy(buf,"");
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
}
return;

}

F-8

/t*********t***

DATE: 16 Feb 1990

VERSION: 1.0

NAME : double_headed_input()

MODULE NUMBER:

DESCRIPTION: This module provides a linked list(Line_labels) which
has the labels of the input arrows touched on an
activity box with double head.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None ,

GLOBAL VARIABLES USED: box, line

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: get2_closest_label(), find_branchnode(),

find_TO_ALL_branchnode(), get_branchnode(),
add_to_inputs_tree()

CALLING MODULES: check_input_abox()

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:

Aok o ok o R o Rk o o ok ok o ok koo o KKK o K o ok o R ol oo o K ok ok ke ok ok ok ok

double_headed_input(tem_line)

struct line_struct *tem_line;

{

extern get2_closest_label(),find_branchnode(),find_TO_ALL_branchnode();

extern get_branchnode(),add_to_inputs_tree();

extern struct box_struct *box;

extern struct line_struct *line;

struct line_struct *original_line;

char buf [DESCRIPTION_LINE_LENGTH +1];

int original.line_type;

L 2R R BEE NN R B R R R BT K S BEE NN R R B SR 2R K R K K R
L AN K BEE IR R G EE R NN R CEEE B BT R K B K S SR EEE

if((tem_line->end_position.x >= box->swcorner.x-10) &&
(tem_line->end_position.x <= box->swcorner.x) &
(tem_line->end_position.y <= box->swcorner.y) (.14
(tem_line->end_position.y >= box->swcorner.y-BOX_HT) &&
(/* tem_line is an input arrow with a double headed arrow */
/* in some extend(toralence). */
(tem_line~>end_activity_num & (ARROW_HEAD)) !'= 0) &&

F-9

((tem_line->end_activity_num & (DOT_T_R)) != 0)) {
original_line_type = get_branchnode(tem_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(/* Exists the line label on tem_line */
get2_closest_label(original_line,buf,tem_line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct =)
add_to_inputs_tree(Line_labels,buf);

return;

}
/* No line label on tem_line - Check if tem_line is a FROM_ALL */
/* type line. If so, search TO_ALL and its label. */

if(original_line->start_activity_num == FROM_ALL) {
original_line = (struct line_struct *)
find_TO_ALL_branchnode(original_line->to_from_label);
original_line_type = get_branchnode(original_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(get2_closest_label(original_line,buf,line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
}
strcpy(buf,"");
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
}
return;

}

F-10

/**********#*##*************#***

DATE: 16 Feb 13990

VERSION: 1.0

NAME : double_headed_input_with_slash()

MODULE NUMBER:

DESCRIPTION: This module provides a means of adding the line
labels with a slash of input arrows with double head
to Line_labels structure

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: box

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE QUTPUT: None

MODULES CALLED: get3_first_label(), add_to_inputs_tree()

CALLING MODULES: check_input_abox()

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:

#*t#*t*#*****************#**t*******#**********#***#****************l
double_headed_input_with_slash(tem_line)

struct line_struct *tem_line;

{

extern get3_first_label(),add_to_inputs_tree();

extern struct box_struct *box;

char buf ([DESCRIPTION_LINE_LENGTH +1];

L 2N BEE IR Bk R N IR BN R N N K R . K BT SR K B R I
L R N IR I S TR T K T I B N N R K K I K

if((tem_line->start_position.x < box->swcorner.x+BOX_WIDTH+15) &&
(tem_line->start_position.x >= box->swcorner.x+BOX_WIDTH) &&

(tem_line->start_position.y <= box->swcorner.y) &&
((tem_line->start_activity_num & (ARROW_HEAD)) !=0) &8
((tem_line->start_activity_num & (DOT_B_L)) != 0))

{

if(get3_first_label(tem_line,buf) == MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;

}
strcpy(buf,"");
Line_labels = (struct text_line_struct *)

F-11

add_to_inputs_tree(Line_labels,buf);

return;

}

/***#****#*******************

DATE: 17 Feb 19890

VERSION: 1.0

NAME: check_output_abox()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of generating a linked
list, Line_labels, with all information labels of
output arrows attatched on an activity box.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: Line_labels

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: single_headed_output(), double_headed_output()

double_headed_output_with_input()
double_headed_output_with_control()

CALLING MODULES: search_labels_touched_abox{)

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:
S Ko o A B KR O K K ok R KR R o o o ok ok ok Sk ook ok ok ok ok ks ok ok /

L R IR R SR R R BT R B BT I B L K B B B L R DR R BN R BN
L IR B R SR EE T R T T R T I I I N R B BN R B B AR

void

check_output_abox(tem_line)

struct line_struct *tem_line;
{

extern struct text_line_struct *Line_labels;

single_headed_output(tem_line);
double_headed_output_with_control(tem_line);
double_headed_output_with_input(tem_line);
double_headed_output(tem_line);

return;

F-13

/****#*******#*tt******#***************##*******#*********************
*
DATE: 17 Feb 1890
VERSION: 1.0
NAME: single_headed_output()
MODULE NUMBER:
DESCRIPTION:
This module provides a means of adding line labels of
output arrows with single head.

ALGORITHM:
PASSED VARIABLES: tem_line
RETURNS: None
GLOBAL VARIABLES USED: Line_labels
GLOBAL VARIABLES CHANGED: Line_labels
FILES READ: None
FILES WRITTEN: None
HARDWARE INPUT: None
HARDWARE OUTPUT: None
MODULES CALLED: get_first_label(), add_to_inputs_tree()
CALLING MODULES: check_output_abox()
AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE:
ORDER OF:
#****#**/
single_headed_output(tem_line)
struct line_struct *tem_line;

{

extern get_first_label(),add_to_inputs_tree();

char buf [DESCRIPTION_LINE_LENGTH +1];

LR BEE BEE AR 2N JUE NN R BEE R BEE R K CNEE R EE R R B R
L R B SN B BN R N . R K CHEE R R B EE R R B S

if (/> Output leaves the right side of a box - single headed arrow */
(tem_line->start_position.x < box->swcorner.x+BOX_WIDTH+15) &%
(tem_line->start_position.x >= box->swcorner.x+BOX_WIDTH) &&

(tem_line->start_position.y <= box->swcorner.y) &&
(tem_line->start_position.y >= box->swcorner.y-BOX_HT) &&
((tem_.line->start_activity_num & (ARROW_HEAD)) == 0))

{

if(get_first_label(tem_line,buf) == MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
strcpy(buf,"");
Line_labels = (struct text_line_struct *)

F-14

add_to_iuputs_tree(Line_labels,buf);
}

return;

}

F-15

/***#*******************#**********************#**********************

*

L I N . R R R R R N BN K R K N R R B R I R R I 3

DATE: 17 Feb 1990

VERSION: 1.0

NAME: double_headed_output_with_control()
MODULE NUMBER:

DESCRIPTION:

L R R B B

This module provides a means of adding the line labels*

of the output arrows with double heads which become
controls of another activity box to a linked list.
ALGORITHM:
PASSED VARIABLES: tem_line
RETURNS: None

GLOBAL VARIABLES USED: line, Line_labels

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: get_branchnode(), find_branchnode(),

get3_closest_label(), find_TO_ALL_branchnode()
add_to_inputs_tree()

CALLING MODULES: check_output_abox()
AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

* ORDER OF:
Ao Kok oK o oo o ok oK ok ok o KK K K KR ok oK o R K R K K sk o Rk ok o R Rk ok Rk ok /

double_headed_output_with_control(tem_line)
struct line_struct *tem_line;

extern get_branchnode(),find_branchnode(),get3_closest_label();
extern find_TO_ALL_branchnode();

extern struct line_struct *line;

struct line_struct *original.line;

char buf [DESCRIPTION_LINE_LENGTH+1];

int original_line_type;

if(/* Output with a double headed control arrow - need to */
/* search the tem_line for the closest label with a slash */
/* and get the label after the slash. */
(tem_line->end_position.y > box->swcorner.y-BOX_HT-15) [.7:4
(tem_line->end_position.y <= box->swcorner.y-BOX_HT) 14
(tem_line->end_position.x <= box->swcorner.x+BOX_WIDTH) &&
(tem_line->end_position.x >= box->swcorner.x) [14

F-16

*
%*
*
*
*
*
*
*
*
%
*
*
*
*
%
*
*
*
*

((tem_line->end_activity_num & (ARROW_HEAD)) != 0) 24
((tem_line->end_activity_num & (DOT_B_L)) != 0))
{
original_line_type = get_branchnode(tem_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(get3_closest_label(original_line,buf,tem_line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
/* No line label on tem_line -~ Check if tem_line is a */
/* FROM_ALL type output. If so, search TO_ALL and its label.*/
if (original_line->start_activity_num == FROM_ALL) {
original_line = (struct line_struct *)
find_TO_ALL_branchnode(original_line->to_from_label);
original_line_type = get_branchnode(original_line);
original_line = (struct line_struct ¥)
find_branchnode(original_line_type);
if (/*have found the branchnode of the TO_ALL line segment#*/
get3_closest_label(original_line,buf,line->struct_type))
{
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
}
strcpy(buf,"");
Line_labels = (struct text_line_struct ¥)
add_to_inputs_tree(Line_labels,buf);
}
return;

}

F-17

P T TR I T P e L P Y

* DATE: 17 Feb 1990

VERSION: 1.0

NAME : double_headed_output_with_input()

MODULE NUMBER:

DESCRIPTION: This module provides a means of adding the line
labels of the output with double heads and the slashx*

* # * X *

*
*

*

*

*

* to a linked list, Line_labels. *
* ALGORITHM: *
* PASSED VARIABLES: tem_line *
* RETURNS: None *
* GLOBAL VARIABLES USED: line *
* GLOBAL VARIABLES CHANGED: Line_labels *
* FILE READ: None *
* FILES WRITTEN: None *
* HARDWARE INPUT: None *
* HARDWARE OUTPUT: None *
* MODULES CALLED: get_branchnode(), find_branchnode(), *
* get3_closest_label(), add_to_inputs_tree() *
* find_TO_ALL_branchnode() *
* CALLING MODULES: check_output_abox() *
* AUTHOR: Intaek Kim *
* HISTORY: *
* ABSTRACT DATA TYPE: *
* ORDER OF: *

******#*****#**/
double_headed_output_with_input(tem_line)

struct line_struct *tem_line;

{

extern get_branchnode(),find_branchnode(),get3_closest_label();

extern add_to_inputs_tree(),find_TO_ALL_branchnode();

extern struct line_struct *line;

struct line_struct *original_line;

int original_line_type;
char buf [DESCRIPTION_LINE_LENGTH +1];

if(/* tem_line is an output with a double headed input */
/* arrow on a box */

(tem_line->end_position.x >= box->swcorner.x -15) &
(tem_line->end_position.x <= box->swcorner.x) [23
(tem_line->end_position.y <= box->swcorner.y) &g

(tem_line->end_position.y >= box->swcorner.y -BOX_HT)&&
((tem_line->end_activity_num & (ARROW_HEAD)) '= 0) &&
((tem_line->end_activity_num & (DOT_T_R)) 1= 0))

{

F-18

original_line_type = get_branchnode(tem_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);

if(/* Exists label on the original line */
get3_closest_label(original_line,buf,tem_line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);

return;
}

if(/* No line label on tem_line - Check if */
/* tem_line is a type of FROM_ALL */

/* line. If so, Search TO_ALL and its label. %/
original_line->start_activity_num == FROM_ALL)
{
original_line = (struct line_struct *)
find_TO_ALL_branchnode(original_line->to_from_label);
original_line_type = get_branchnode(original_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(/* Find the branchnode of the TO_ALL line segment */
get3_closest_label(original_line,buf,line->struct_type)
== MYTRUE)
{
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
}
strcpy(buf,"");
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
}
return;

}

F-19

/***t**t#*********t*#***********

DATE: 17 Feb 1990

VERSION: 1.0

NAME: double_headed_output()

MODULE NUMBER:

DESCRIPTION: This module provides a means of adding the line
labels of the output with double heads to a linked
list, Line_labels.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: Line_labels

ZLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HAREWARE OQUTPUT: None

MODULES CALLED: get2_first_label(), add_to_inputs_tree()

CALLING MODULES: check_output_abox()

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

* ORDER OF:

Ao R R KRR K R KK R A K K o o ok oo ook ko ok ok Aok ok ook ok ok /

double_headed_output(tem_line)

struct line_struct *tem_line;

{

extern get2_first_label(),add_to_inputs_tree();
char buf [DESCRIPTION_LINE_LENGTH +1];

L IR R BN 2 N N T BEE N R BEE NN BN R CNEE R R R R B 2
* % ¥ X OH O H X X ¥ OE K O H X X X X X O W X *

if (/* Output line leaves the right side of a box and there is */
/* a double headed arrow. */
(tem_line->start_position.x <= box->swcorner.x + BOX_WIDTH + 10)
(tem_line->start_position.x >= box->swcorner.x + BOX_WIDTH)
(tem_line->start_position.y <= box->swcorner.y)
(tem_line->start_position.y >= box->swcorner.y - BOX_HT)
((tem_line->start_activity_num & (ARROW_HEAD)) != 0)
((tem_line->start_activity_num & (DOT_B_LIDOT.T_R)) != 0))
{
if(get2_first_label(tem_line,buf) == MYTRUE) {
Line_labels = (struct text_line_struct #*)
add_to_inputs_tree(Line_labels,buf);
return;

F-20

&&
&&
&&
&&
&&

strcpy (buf,"");

Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);

}

return;

F-21

AR oo o oo o o o kR R K o K o oo o o o o o o o e e 0 oo o oo o o oo o o o ok o oK o o o o ok

* *
DATE: 19 Feb 1990 *
VERSION: 1.0 *
NAME: check_control_abox() *
MODULE NUMBER: *

DESCRIPTION: This module provides a means of generating a linked *
list(Line_labels) which has the information of labelsx*
of the control arrows attatched on an activity box. =*

ALGORITHM: *

PASSED VARIABLES: tem_line *

RETURNS: None *

GLOBAL VARIABLES USED: None *

GLOBAL VARIABLES CHANGED: None *

FILES READ: None *

FILES WRITTEN: None *

HARDWARE INPUT: None *

HARDWARE OUTPUT: None *

MODULES CALLED: single_headed_control(), double_headed_control() *

double_headed_control_with_slash() x

CALLING MODULES: search_labels_touched_abox() *

AUTHOR: Intaek Kim *

HISTORY: *

ABSTRACT DATA TYPE: *

*

ORDER OF:
Aok Rk Rk IR KRR R Rk kR ok KRR Rk kKRR R R ok K kAR ok kK ko ok [

LR K JEE K JNE TR JEE JEE BN R N BEE JEE R BN R B L R R R I

void
check_control_abox(tem_line)
struct line_struct *tem_line;

{

extern struct text_line_struct *Line_labels;

single_headed_control(tem_line);
double_headed_control(tem_line);
double_headed_control_with_slash(tem_line);
return;

F-22

/oo s e o o oo o o ook ok ok oo o oo oo o o o o o o oo o oo ok o o o o o K o o ok ok ok

DATE: 19 Feb 1890

VERSION: 1.0

NAME: single_headed_control()

MODULE NUMBER:

DESCRIPTION: This mcdule provides a means of adding the line
labels of the ccntrol arrows with a single head to
the linked list, Line_labels.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: line, Line_labels

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE QUTPUT: None

MODULES CALLED: get_closest_label(), add_to_inputs_tree()

get_branchnode(), find_branchnode(),
find_TO_ALL_branchnode()

CALLING MODULES: check_control_abox()

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:

L T T P P P R S e P s TR Ly

single_headed_control(tem_line)

struct line_struct *tem_line;

{

extern get_closest_label(),add_to_inputs_tree(),get_branchnode();
extern find_branchnode(),find_TO_ALL_branchnode();

extern struct line_struct *line;

struct line_struct *original_line;

int original_line_type;

char buf [DESCRIPTION_LINE_LENGTH +1];

LR R B BN R R BN N R N IR BN IR K TN BEE R R BEE BN BN R R R
L B R R R R SN K EEE R N R R BRI B K IR R R B R

if(/* Control line comes to the upper side of a box and there */

/* is a single headed arrow. x/
(tem_line->end_position.x <= box->swcorner.x + BOX_WIDTH) &&
(tem_line->end_position.x >= box->swcorner.x) .24
(tem_line->end_position.y >= box->swcorner.y - BOX_HT - 10) &&
(tem_line->end_position.y <= box->swcorner.y -~ BOX_HT) &&
((tem_line->end_activity_num & (ARROW_HEAD)) != 0) &&

((tem_line->end_activity_num & (DOT_B_L|DOT_.T_R)) == 0))

F-23

{
original_line_type = get_branchnode(tem_line);
original _1ime = (struct line_struct *)
find_branchnode(original_line_type);
if(/* found a label on the line */
get_closest_label(original_line,buf,tem_line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
Teturn;
}
if(/* No label on tem_line - Check if a FROM_ALL exists. */
/* If so, search TO_ALL and get a label for this line. */
original_line->start_activity_num == FROM_ALL) {
original_line = (struct line_struct *)
find_TO_ALL_branchnode(original_line->to_from_label);
original_line_type = get_branchnode(original_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(/* found the branchnode of the TO_ALL line segment */
get_closest_label(original_line,buf,line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;

}
strcpy(buf,"");
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
}
return;

}

F-24

/Ao o ook oot o oo o o oK o 3 KR K KoK o o o o o o K o oo o o o o o o o R K

[B IR BN BEE SR JEE JEE K EE CEEE R ST CBEE R K T R R N K K K K

DATE: 19 Feb 13990

VERSION: 1.0

NAME : double_headed_control_with_slash()
MODULE NUMBER:

DESCRIPTION: This module provides a means of adding the labels

of the control arrows with double heads and the
slash to the linked list, Line_labels.
ALGORITHM:
PASSED VARIABLES: tem_line
RETURNS: None
GLOBAL VARIABLES USED: Line_labels
GLOBAL VARIABLES CHANGED: Line_labels
FILES READ: None
FILES WRITTEN: None
HARDWARE INPUT: None
HARDWARE OUTPUT: None
MODULES CALLED: get2_closest_label(), add_to_inputs_tree(),
get_branchnode(), find_TO_ALL_branchnode(),
find_branchnode()
CALLING MODULES: check_control_abox()
AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE:
ORDER OF:

L SR BEE JEE R R N S NN L K R I IR SRR R AR R BN R S R

******#*tt*****#**********************#********##*#****************/

double_headed_control_with_slash(tem_line)
struct line_struct *tem_line;

{

extern get2_closest_label(),add_to_inputs_tree(),get_branchnode();

extern find_TO_ALL_branchnode(),find_branchnode();
struct line_struct *original_line;

char buf [DESCRIPTION_LINE_LENGTH +1];

int original_line_type;

if(/* Have a control with a double headed arrow */
(tem_line->end_position.y <= box->swcorner.y-BOX_HT) &&

(tem_line->end_position.y >= box->swcorner.y-BOX_HT-15) &&
(tem_line->end_position.x <= box->swcorner.x+BOX_WIDTH) &&

(tem_line->end_position.x >= box->swcorner.x) &&
((tem_line~>end_activity_num & (ARROW_HEAD)) != 0) &&
((tem_line->end_activity_num & (DOT_B_L)) !'= 0))

{

original_line_type = get_branchnode(tem._line);

F-25

original line = (struct line_struct *)
find_branchnode(original_line_type);
if(get2_closest_label(original_line,buf,tem_line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct #)
add_to_inputs_tree(Line_labels,buf);
return;

if(/* No label on tem_line - Check if tem_line is a FROM_ALL */
/* type line. If so, search the TO_ALL and get a label */
/* from TO_ALL line. */
original_line->start_activity_num == FROM_ALL) {
original_line = (struct line_struct *)
find_TO_ALL_branchnode(original_line->to_from_label);
original_line_type = get_branchnode(original_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(get2_closest_label(original_line,buf,line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;

}
strcpy(buf,"");
Line_labels = (struct text_line_struct x*)
add_to_inputs_tree(Line_labels,buf);
}

return;

}

F-26

/*******t******t*************************#****tt***#************#****

*

[2N BEE BN R 2BE R JEE K K NN K N BEE R K NN T NN K B B

DATE: 20 Feb 1990

VERSION: 1.0

NAME: double_headed_control()

MODULE KUMBER:

DESCRIPTION: This module provides a means of adding the line
labels of the control arrows with double head to
the linked list, Line_labels.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: Line_labels

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: Nnone

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: get3_first_label(), add_to_inputs_tree()

CALLING MODULES: check_control_abox()

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:

L K K B R 2R R EE R NEE NS BEE BEE BEE BN S IR R R N R N I

##*#**#*#/

double_headed_control(tem_line)
struct line_struct *tem_line;

{

extern get3_first_label(),add_to_inputs_tree();
char buf [DESCRIPTION_LINE_LENGTH +1];

if((tem_line->start_position.x <= box->swcorner.x+BOX_WIDTH+10) &&

(tem_line->start_position.x >= box->swcorner.x+BOX_WIDTH)
(tem_line->start_position.y <= box->swcorner.y)
(tem_line->start_position.y >= box->swcorner.y-BOX_HT)
((tem_line->start_activity_num & (ARROW_HEAD)) '= 0)
((tem_line->start_activity_num & (DOT_T_R)) != 0))

{

if(get3_first_label(tem_line,buf) == MYTRUE) {

Line_labels = (struct text_line_struct)
add_to_inputs_tree(Line_labels,buf);
return;

strcpy(buf,"");
Line_labels = (struct text_line_struct =)

F-27

&
&
&
&&

add_to_inputs_tree(Line_labels,buf);
}

return;

}

F-28

20 e e o o o o ok o ok e ok ok ok ko ok ok o ok ok ok o ok o ok i 3k o ok ok o ok o ok ok K o a3k ok o ok ok o ok ok ok ok ok ok o ok sk ok ok ko ok ok ok o ok ok ok

DATE: 21 Feb 1990

VERSION: 1.0

NAME: check_mechanism_abox()

MODULE NUMBER:

DESCRIPTION: This module provides means of generating a linked
list, Line_labels, with all information labels of the
mechanism arrows attatched on an activity box.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: Line_labels

GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: single_headed_mechanism()

CALLING MODULES: search_labels_touched_abox()

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:

3k o ok oK o o R R K o K oK o ok ok oK ok K Kk ok K ok Ak ok ok ok ok ok ok

void

check_mechanism_abox(tem_line)

struct line_struct *tem_line;

{

extern struct text_line_struct *Line_labels;

L R K BN AR JEE BEE BN BEE R SR N R R BEE BN B K B N BN SR N
#* % H O ® X F R K F E ¥ X F OH ¥ ¥ ¥ ¥ ¥ X * *

single_headed_mechanism(tem_line);
return;

}

F-29

AT L L e e P P e P 3

*

DATE: 21 Feb 1990

VERSION: 1.0

NAME: single_headed_mechanism()

MODULE NUMBER:

DESCRIPTION: This module provides a means of adding the line
labels of the mechanism arrows with a single head to
a linked list, Line_labels.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: line, Line_labels

GLOBAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: get_branchnode(), find_branchnode(),

get_closest_label(), find_TO_ALL_branchnode()
add_to_inputs_tree()

CALLING MODULES: check_mechanism_abox()

AUTHOR: Intaek Kim

HISTORY:

ABSTRACT DATA TYPE:

ORDER OF:
ok o oo o oo oo R o R o R Ko s o o oo ok ok ok ok kK Rk Rk ok ok ok ok ok sk ok ok /

L 2NN BEE BEE IR SR JEE NN EE BEE BEE EEE ST BN K K JEE EE K N IS IR K
% ¥ X N X X X F ¥ ¥ ¥ ¥ O K X X OH X H X X * *

single_headed_mechanism(tem_line)
struct line_struct *tem_line;
{
extern get_branchnode(),find_branchnode(),get_closest_label();
extern find_TO_ALL_branchnode(),add_to_inputs_tree();
extern struct line_struct *line;
struct line_struct *original_line;
int original_line_type;
char buf [DESCRIPTION_LINE_LENGTH +1];

if((tem_line->end_position.x <= box->swcorner.x+BOX_WIDTH) &&

(tem_line->end_position.x >= box->swcorner.x) &k
(tem_line->end_position.y >= box->swcorner.y) &g
(tem_line->end_position.y <= box->swcorner.y+15))

{

original_line_type = get_branchnode(tem_line);
original_line = (struct line_struct #)
find_branchnode(original_line_type);

F-30

if(get_closest_label(original_line,buf,tem_line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
if(original_line->start_activity_num == FROM_ALL) {
original_line = (struct line_struct %)
find_TO_ALL_branchnode(original_line->to_from_label);
original_line_type = get_branchnode(original_line);
original_line = (struct line_struct *)
find_branchnode(original_line_type);
if(get_closest_label(original_line,buf,line->struct_type)
== MYTRUE) {
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
return;
}
}
strcpy(buf,"");
Line_labels = (struct text_line_struct *)
add_to_inputs_tree(Line_labels,buf);
}

return;

F-31

/e e o s e s e o o a0 o o ok ok ook ok o ok ok o o ok ook s o o o o ok ok ok o ko 6 ok 3ok o ok ok o o ok o oK ok ok ook ok

DATE: 15 Feb 1990
VERSION: 1.0

NAME: search_labels_touched_abox()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of searching the line
label in accordance with the ICOM code.

ALGORITHM:

PASSED VARIABLES: tem_line

RETURNS: None

GLOBAL VARIABLES USED: Line_labels

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT:None

MODULES CALLED: check_input_abox(), check_output_abox(),
check_control_abox(),
check_mechanism_abox(),

CALLING MODULES: get_labels_for_abox()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE :
ORDER OF :
********#******t***********#*****#**********#*************************/
search_labels_touched_abox(tem_line,indicator)

struct line_struct *tem_line;

char indicator;

{

extern struct text_line_struct *Line_labels;

LR BEE BN N R R N EE R BN N R R BN K R K 2EE R R BEE X BEE BEE N 3
L I I N T R I B I S . N B BT SN R K BT NN T B N I A

if(tem_line == NULL) return;

else {
search_labels_touched_abox(tem_line->left,indicator);
search_labels_touched_abox(tem_line->right,indicator);

switch(indicator) {
case ’I’:
check_input_abox(tem_line);
break;

F-32

case ’0’:
check_output_abox(tem_line);
break;

case ’C’:
check_control_abox{(tem_line);
break;

case ’M’:
check_mechanism_abox(tem_line);
break;

default:
break;

}
}
return;

}

F-33

/**#***#***************

*

L BEE SR S SR SR SN R K I B K B R I R K N R B 2 B R R R B

DATE: 15 Feb 1990
VERSION: 1.0

NAME: get_labels_for_abox
MODULE NUMBER:
DESCRIPTION:

This module provides a means of constructing a linked list

(Line_labels) made of the line labels in accordance with
the variable, indicator.

ALGORITHM:
PASSED VARIABLES: indicator

RETURNS: None

GLOBAL VARIABLES USED: line_rootnode, Line_labels
GLOVAL VARIABLES CHANGED: Line_labels

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: none

HARDWARE OUTPUT: None

MODULES CALLED: search_labels_touched_abox()
CALLING MODULES: save_arrow_info_of_abox()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :

LN T B S K R K S K R I B R K R T K R B R B R

oo o o o o o o oo ok oo s oo o R K AR R o o K o R o o K o o o s oK ok Kok [
struct text_line_struct *
get_labels_for_abox(indicator)
char indicator;

{

extern struct line_struct *lina_rootnode;
extern struct text_line_struct *Line_labels;
struct line_struct *temporary_line;

Line_labels = NULL;
temporary.line = line_rootnode;

while(temporary_line != NULL) {

search_labels_touched_abox(temporary_line,indicator);
temporary_line = temporary_line->next;

return(Line_labels);

F-34

[k kiR ok oo koo o ko kA ok o s oo koo KK Kk Kk ok ok KRk
*

DATE: 15 Feb 1990
VERSION: 1.0

NAME: save_arrow_info_of_abox()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of saving all information of
arrows (ICOM) attatched on a box to a file.

ALGORITHM:

PASSED VARIABLES: fp, tem_box

RETURNS: None

GLOBAL VARIABLES USED: box

GLOVAL VARIABLES CHANGED: box

FILES READ: None

FILES WRITTEN: *.pro, CHECKBOX.PRO, or CHECKBOUNDARY.PRO

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: get_labels_for_abox(), fprintf(), itoa()

CALLING MODULES: create_temp_box_info(), traverse_boxes()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :

o o o o o oo oo o o o o ok o oo o oo o o o o K oo o ok o ok ok o o o ok o o o ook Rk ok ook ok ok ok ok Xk ko ok f

¥ % X X ¥ X O ¥ O K O ¥ F O ¥ F R H I H F O H X * * *

L K NN SBE BEE JEE BEE BEE BEE BEE SEE K BEE 2N SRk JNE R BEE L SN SEE L R N R

void
save_arrow_info_of_abox(fp,tem_box)
FILE *fp;
struct box_struct *tem_box;
{
extern itoa();
extern struct box_struct *box;
struct text_line_struct *ICOM_labels;
char buf [DESCRIPTION_LINE_LENGTH+1];
int number_of_input = O;
int number_of_output = 0;
int number_of_control = 0;
int number_of_mechanism = 0;

[rxxkxkxkns NAME sesrkrssks/
fprintf(fp,"confirmed([’%s’,is,in_data]).\n",

F-35

tem_box->name.text_string);

[xrkknkrkskknk NUMBER #¥kkkikkkukk/
itoa(tem_box->number,buf);
fprintf(fp,"confirmed([’Ys’ ,number_is,¥%s]).\n",
tem_box->name.text_string,buf);
box = tem_box;

JRkkkkkkkkkkkkkkkk INPUTS skkkkkkkdoorkkikkk/
ICOM_labels = (struct text_line_struct *)get_labels_for_abox(’'I’);
if (ICOM_labels == NULL) {
fprintf(fp,"confirmed({’%s’,input_is,null]).\n",
tem_box->name.text_string);
}
else {
vhile(ICOM_labels != NULL) {
fprintf(fp,"confirmed([’%s’,input_is,’¥%s’]).\n",
tem_box->name.text_string, ICOM_labels->text_line);
ICOM_labels = ICOM_labels->next;
number_of_input += 1;
}
itoa(number_of_input,buf);
fprintf(fp,"confirmed([’¥s’, has_input_number, %sl).\n",
tem_box->name.text_string,buf);

}

JHkrkkkkkikkrkaioknk QUTPUTS sk koo ok kokok ook /
ICOM_labels = (struct text_line_struct *)get_labels_for_abox(’0’);
if (ICOM_labels == NULL) {

fprintf(fp,"confirmed([’'%s’,output_is,nulll).\n",
tem_box->name.text_string);
}
else {
while(ICOM_labels != NULL) {
fprintf(fp,"confirmed([’%s’,output_is,’%s’]).\n",
tem_box->name.text_string,ICOM_labels->text_line);
ICOM_labels = ICOM_labels->next;
number_of_output += 1;
}
itoa(number_of_output,buf);
fprintf(fp,”confirmed([’%s’, has_output_number, ¥sl).\n",
tem_box->name.text_string, buf);

}

F-36

[RRkkdokkxkkkiokkkkinktk CONTROLS ¥ kmkookokakkkomdokkokkkkk/
ICOM_labels = (struct text_line_struct *)get_labels_for_abox(’C’);
if (ICOM_labels == NULL) {

fprintf (fp,"confirmed([’)s’,control_is,nulll).\n",
tem_box->name.text_string);
}
else {
while(ICOM_labels != NULL) {
fprintf(fp,"confirmed([’%s’,control_is,’%s’]).\n",
tem_box->name.text_string,ICOM_labels->text_line);
ICOM_labels = ICOM_labels->next;
number_of_control += 1;
}
itoa(number_of_control,buf);
fprintf(fp,"confirmed([’%s’, has_control_number, %s]).\n",
tem_box->name.text_string,buf);

}

Jaxxsokkkkkknkkkkkkk MECHANISMS koo ook dkorokokokok /
ICOM_labels = (struct text_line_struct *)get_labels_for_abox(’M’);
if (ICOM_labels == NULL) {

fprintf(fp,"confirmed([’)s’,mechanism_is,null]).\n",
tem_box->name.text_string);
}
else {
while(ICOM_labels != NULL) {
fprintf(fp,“confirmed([’¥%s’,mechanism_is,’%s’]).\n",
tem_box->name.text_string,ICOM_labels->text_line);
ICOM_labels = ICOM_labels->next;
number_of_mechanism += 1;
}
itoa(number_of _mechanism,buf);
fprintf(fp,"confirmed([’%s’, has_mechanism_number, %s]).\n",
tem_box->name.text_string,buf);
}

return;

F-37

/*#***#************#*#**t***t#**********#*********#********************

DATE: 15 Feb 1990
VERSION: 1.0

NAME: create_temp_box_info()
MODULE NUMBER:
DESCRIPTION:

This module provides a means of creating the
temporary file, CHECKBOX.PRO, which contains a set of
predicate forms for an activity box.

ALGORITHM:
PASSED VARIABLES: found_box

RETURNS: None

GLOBAL VARIABLES USED: None

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEMN: CHECKBOX.PRO

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: fopen(), put_message(), disable_input_window(),
save_header_info(), save_arrow_info_of_abox(),
fclose(), printf()

CALLING MODULES: find_clicked_box()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE :

ORDER OF :
o ORI AR R o oK K R A AR K R o ok ok ook o kR ok Kok ok R kR

L N SN N BN R R NN B R L R R R SEE R SR K BEE SR N BEE NS R R R BN R R 4
LR R K B R R N N K BN BEE T B R R B R N R R R R R

void

create_temp_box_info(found_box)

struct box_struct *found_box;

{
extern put_message(),disable_input_window();
FILE #*fp;

if ((fp = fopen("CHECKBOX.PRO","w")) == NULL) {
put_message(1,"Unable to open the CHECKBOX.PRO file -- ABORT.");
disable_input_window();
}

else {
disable_input_window();
save_header_info(fp);

F-38

save_arrow_info_of_abox(fp,found_box);
if (fclose(fp) != 0) printf("FILE CLOSE FAILED\n");

}

return;

F-39

[30 ok ko o ke o oo o o o oo oo ok o o ook ook o oo o oo o o oo o ok o o o oK ok o ok ke ok ok sk ok o o o o oKk ok ok

LR R SR IR JEE JEE JEE NN N BEE SR BEE BN JEE JEE Y BN R JEE B B 2K R T IR Sy

DATE: 15 Feb 1990
VERSION: 1.0

NAME: find_clicked_box()
MODULE NUMBER:
DESCRIPTION:

This module provides a means of checking if there is a box
within the cordinate(x,y) clicked by the user mouse.

ALGORITHM:
PASSED VARIABLES: x,y

RETURNS: None

GLOBAL VARIABLES USED: box_rootnode

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: put_message(), create_temp_box_info(),
my_window_set(), null_proc()

CALLING MODULES: check_button_for_activity()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
CRDER OF :

L N S AN R IR BN L R B S N B K NEE I BEE R R BRI N B S S S S

*****t********#********************lll*********************************/

void
find_clicked_box(x,y)

int x,y;

extern put_message(),my_window.set(),null_proc();
extern struct box_struct *box_rootnode;
struct box_struct *bbox;

bbox = box_rootnode;
while (bbox != NULL) {
if(x >= bbox->swcorner.x && x <= bbox >swcorner.x + BOX_WIDTH &&

y >= bbox->swcorner.y - BOX_HT && y <= bbox->swcorner.y)

{

put_message(1,"Enter the prolog environment
using another window.");
create_temp_box_info(bbox);

F-40

my_window_set(null_proc);
return;

}

bbox = bbox~>next;

}

put_message(1,"Box not found - Try again(|L| to select)");
return;

F-41

/********#**********************************#**************************
*

DATE: 15 Feb 19390
VERSION: 1.0

NAME: check_button_for_activity()
MODULE NUMBER:
DESCRIPTION:

This module provides a means of checking the button clicked*

* ¥ O H ¥ F X *

*

*

*

*

*

*

*

* by user mouse if the clicked button is right or left. *
* ALGORITHM: *
* PASSED VARIABLES: window, event, arg(Sun variable) *
* *
* RETURNS: None *
* GLOBAL VARIABLES USED: window, event, arg *
* GLOVAL VARIABLES CHANGED: None *
* FILES READ: None *
* FILES WRITTEN: None *
* HARDWARE INPUT: None *
* HARDWARE OUTPUT: None *
* MODULES CALLED: event_id(), find_clicked_box(), event_x(), *
* event_y(), my_vindow_set(), null_proc(), *
* put_message() *
* CALLING MODULES: check_activity() *
* *
* AUTHOR: Intaek Kim *
* HISTORY: *
* ABSTRACT DATA TYPE : *
* ORDER OF : *

***********#***/
void
check_button_for_activity(window,event,arg)
Window window;
Event *event;
caddr_t arg;
{
extern my_window_set();
extern put_message(), null_proc();

/* Check for left or right button */
switch(event_id(event)) {

case MS_LEFT:

if(event_is_up(event))
find_clicked_box(event_x(event),event_y(event));

F-42

break;

case MS_RIGHT:
my_window_set(null_proc);
put_message(1,"ABORT -- Make another selection.");
break;

default:
break;
}

return;

F-43

00 o o e e o o o o oo o o K oKl 3o o oK R KK o o R oo o o ok R K ok ook ok ok ok ok ok ok ok ok ok ook

DATE: 15 Feb 1990
VERSION: 1.0

NAME: check_activity()
MODULE NUMBER:
DESCRIPTION:
This module provides a means of finally producing a file
contained a set of predicate forms for an activity box.
ALGORITHM:
PASSED VARIABLES: None

RETURNS: Kone

GLOBAL VARIABLES USED: header_rootnode, box_rootnode

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: put_message(), strcmp(), my_move_cursor(),
my_window_set()

CALLING MODULES: make_windows()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE :

ORDER OF :
oo Ao oK o o oK o K ok o SRR K K o o ook KoK ok koK ok K sk ok ok ok

L N I B G N K I R K T B B R R R K K K K T B S R B
#* % ¥ O H X X X ¥ F F OE N ¥ N OH ¥ N X X ¥ O X * * ¥ *

void
check_activity()
{
extern put_message(), my_window_set(), my_move_cursor();
extern struct box_struct *box_rootnode;
extern struct header_struct *header_rootnode;

if (box_rootnode == NULL) {
put_message(1,"FATAL: Can’t check this empty diagram
-- Make another selection.'");
return;
}
if (stremp(header_rootnode->title.text_string,"") == 0) {
put_message(1,"NO TITLE: Please enter the TITLE
using EDIT DGM and then RETRY!!!");
return;

F-44

}
my_move_cursor (INIT_LOC_X,INIT_LOC_Y);

my_window_set(check_button_for_activity);
put_message(1,"Move cursor inside activity box
and click left button - Right to ABORT.");
return;

}

F-45

/**#***

*

[JEE SRR BEE BEE 2R K JEE N K BN R R R R B K JEE K L BN SEE BN R R N

DATE: 15 Feb 1990
VERSION: 1.0

NAME: create_temp_boundary_info()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of saving all information of
boundary arrows of the IDEFO diagram into the tempory
file CHECKBOUNDARY.PRO.

ALGORITHM:

PASSED VARIABLES: parentfile

RETURNS: None

GLOBAL VARIABLES USED: header_rootnode

GLOVAL VARIABLES CHANGED: None

FILES READ: parentfile

FILES WRITTEN: CHECKBOUNDARY.PRD

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: fopen(), put_message(), disable_input_window()
getc(), putc(), fclose(), search_boundary_info(),
save_null_boundary(), printf()

CALLING MODULES: check_parent_box_file()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :

LR T BRI SR K B TR R BEE N S IR BT BT N CEEE B R R N R R R R

*************#******************#*t*******#**************************/

void
create_termp_boundary_info(parentfile)

char parentfile[];

{

extern put_message(),disable_input_window();

FILE »parentfp, *childfp;

extern struct header_struct *header_rootnode;

extern int number_of_boundary_input,number_of_boundary_output;
extern int number_of_boundary_control,number_of_boundary_mechanism;
int ch;

number_of_boundary_input = 0

number_of _boundary_output = 0;
number_of_boundary_control = O;

F-46

number _of _boundary_mechanism = 0;
if((parentfp = fopen(parentfile,"r")) == NULL ||
(childfp = fopen("CHECKBOUNDARY.PRO","w")) == NULL) {

put_message(1,"Unable to open the predicate file(s) ~- ABORT");
disable_input_window();

}

else {
disable_input_window();
vhile((ch = getc(parentfp)) != EOF)

putc(ch,childfp);

fclose(parentfp);
search_boundary_info(childfp);
save_null_boundary(childfp);

1f(fclose(childfp) !'= 0) printf("FILE CLOSE FAILED\n");
}

return;

F-47

/**

DATE: 15 Feb 1990
VERSION: 1.0

NAME: check_parent_box_file()
MODULE NUMBER:
DESCRIPTION:
This module provides a means of checking if there is the
file which the user specifies in the current directory.
ALGORITHM:
PASSED VARIABLES: None

RETURNS: None

GLOBAL VARIABLES USED: None

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE QUTPUT: None

MODULES CALLED: strcpy(), panel_get_value(), fix_input(),
strcmp(), put_message(), disable_input_window(),
strcat(), check_filename(),
create_temp_boundary_info()

CALLING MODULES: check_button_for_boundary()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :
T PP S P LY
check_parent_box_file()

{

extern put_message(), disable_input_window(),check_filename();
extern my_move_cursor(),my_window_set(),fix_input();

char name [FILE_NAME_LENGTH + 1] ,name2[FILE_NAME_LENGTH + 5];

int file_type._indicator;

LR JEE SRR SN BEE K SN R K JEE BN NEE EE SEE BN BT BER BEE BN NN A IR SEE I SR R R B
LR N R B SR N T K R BN R B Y B B NN R B R BN K BT BN BN R S

strcpy(name, (char *)panel_get_value(input_item));
fix_input(name);
if(strcmp(name,"") ==0) {
put_message(1,"ABORT: No file name received
--Make another selection.");
disable_input_window();
return(PANEL_NONE) ;

F-48

}
strcpy(name2,name) ;
strcat(name2,".pro");
file_type.indicator = check_filename(name2);
switch (file_type_indicator) {

case -1:
disable_input_window();
put_message(1,"ABORT: File does not exist
--Make another selection.');
break;

case -3:
disable_input_window();
put_message(1,"ABORT: File is a directory
-- Make another selection.');
break;

case -2: /% READ ONLY */

case O0: /x READ/WRITE.. =/
put_message(1,"Enter prolog environment using another window.");
create_temp_boundary_info(name2) ;

break;
default:
put_message(1,"Unknown condition -- Make another selection.");
disable_input_window();
break;

}
return(PANEL_NONE) ;

F-49

] ok s o s o o o o o oo o s o R o o2 oo o KK R o o ok s o ook ok ok ok o o oo ook ok ok ok o ok ok ok

*
DATE: 15 Feb 1990
VERSION: 1.0

NAME: check_button_for_boundary()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of conforming if the user
would like to be continue to check IDEFO syntax for the
boundary arrows in any IDEFO diagram.

ALGORITHM:

PASSED VARIABLES: window, event, arg(Sun variables)

RETURNS: None

GLOBAL VARIABLES USED: None
GLOVAL VARIABLES CHANGED: None
FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

panel_set(), check_parent_box_file(),
put_message(), my_window_set(), null_proc()
CALLING MODULES: check_boundary()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :

L R ZEE R BEE BEE S SN JEE K NEE R T BEE SR L S R L R N SN BEE BN BER R R S

MODULES CALLED: event_is_up(), event_id(), enable_input_window(),

#* % % O ¥ X X X % ¥ X ¥ O X F ¥ F ¥ X X ¥ X O K X ¥ ¥ * *

********#**/

void
check_button_for_boundary(window,event,arg)
Window window;
Event *event;
caddr_t arg;
{
extern put_message(),enable_input_window(),my_window_set();
extern null_proc();

if(event_is_up(event)) return;
switch event_id(event)

{
case MS_LEFT:

F-50

enable_input_window();
panel_set(input_item,
PANEL_VALUE_STORED_LENGTH,FILE_NAME_LENGTH,
PANEL_NOTIFY_PROC, check_parent_box_file,
0);
put_message(1,"“Enter the predicate file NAME
with parent box and hit <Return>.");
break;

case MS_RIGHT:
my_window_set(null_proc);
put_message(1,"OPERATION ABORTED -- Make another selection.");
break;

default: break;
}

return;

F-51

/**********************#**********************#************************
*

DATE: 15 Feb 1990

VERSION: 1.0

NAME: check_boundary()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of producing all information
of a set of predicate forms of the boundary arrows in the
IDEFO diagram so as to check IDEFO syntax of boundary
arrowvs.

ALGORITHM:

PASSED VARIABLES: None

RETURNS: None

GLOBAL VARIABLES USED: hearder_rootnode,line_rocotnode

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: disable_input_window(), put_message(), strcmp(),
my_move_cursor(), my_window_set()

CALLING MODULES: make_windows()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :

****#********************************#***********#*******************/

L JEE SR SEE NS 20 BN NN NN R R R EEE R SR R NS K N R N B SR R R R B
L 2N BEE B R SR 2N T R BN BEE K B BT R BT N R R I EEE B IR R R R B R

void

check_boundary()

{
extern put_message(),my_window_set();
extern my_move_cursor(),disable_input_window();
extern struct box_struct *box_rootnode;
extern struct line_struct *line_rootnode;
extern struct header_struct x*header_rootnode;

if(box_rootnode == NULL) {

disable_input_window();

put_message(1,"FATAL: Can’t check this empty diagram
-- Make another selection.");

return;

F-52

}
if(line_rootnode == NULL) {
put_message(1,"FATAL: Can’t check this diagram
-- Make another selection.");
disable_input_window();
return;

}

if(strcmp(header_rootnode->title.text_string,"") == 0) {
put_message(1,"NO TITLE: Please enter the TITLE using EDIT DGM
and then RETRY!!!");
disable_input_window();
return;

}
put_message(1,"CHECK BOUNDARY ARROW : |L| to check - |R| to ABORT");

my_move_cursor (INIT_LOC_X,INIT_LOC_.Y);
my_window_set(check_button_for_boundary);
return;

}

F-53

/***********#************************#********t*#**********************

LR BN BEE L BN R N N NS BN R B N N SR JEE NN R BEE BT SN R BT SR BEE IR I N K

DATE: 15 Feb 19390
VERSION: 1.0

NAME: save_null_boundary()
MODULE NUMBER:
DESCRIPTION:

This module provides a means of saving the information
which contains that there is no boundary arrow in

accordance with ICOM.
ALGORITHM:
PASSED VARIABLES: fp(file pointer)

RETURNS: None

GLOBAL VARIABLES USED: rnumber_of_boundary_input,
number_of_boundary_output,
number_of_boundary_control,
number_of_boundary_mechanism

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: fp

HARDWARE INPUT: None

HARDWARE OUTPUT: Ncone

MODULES CALLED: fprintf(), itoa()

CALLING MODULES: create_temp_boundary_info()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :

L N I SN B O SN R R K R T I R N B R R K B R T B K B

AR R R KR RO AR AR R KK AR KK KKK KK K Ko
save_null_boundary(fp)

FILE =fp;

extern int number_of_boundary_input,number_of_boundary_output;
extern int number_of_boundary_control,number_of_boundary_mechanism;
extern itoa();

char buf [DESCRIPTION_LINE_LENGTH+1];

if (number_of_boundary_input == 0)
fprintf(fp, " confirmed([boundary_input, is, nulll).\n");
if (number_of_boundary_output == Q)
fprintf(fp,"confirmed([boundary_output, is, nulll).\n");
if (number_of_boundary_control == 0)

F-54

fprintf(fp,“confirmed([boundary_control, is, null]).\n");
if (number_of_boundary_mechanism == 0)
fprintf(fp,"confirmed([boundary_mechanism, is, nulll]).\n");
itoa(number_of_boundary_input,buf);
fprintf(fp,“confirmed([boundary_input, has_number, %s]).\n",buf);
itoa(number_of_boundary_output,buf);
fprintf(fp,"confirmed([boundary_output, has_number, %s]).\n",buf);
itoa(number_of_boundary_control,buf);
fprintf(fp,“"confirmed([boundary_control, has_number, %s]).\n", buf);
itoa(number_of_boundary_mechanism,buf);
fprintf(fp,"confirmed([boundary_mechanism, has_number, %s]).\n",buf);
return(MYTRUE) ;
}

F-55

[0 oo o o oK o o oo KK Ko oK oo K K K K KK K KK KK KK KoK
*

DATE: 15 Feb 1990
VERSION: 1.0

NAME: search_NLR_boundary_line_info()
MODULE NUMBER:
DESCRIPTION:
This module provides a means of working through the
tree of line structure in left and right direction.
ALGORITHM:
PASSED VARIABLES: line_info, fp

RETURNS: None

GLOBAL VARIABLES USED: None

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: save_boundary_line_info(),
search_NLR_boundary_line_info()

CALLING MODULES: search_boundary_info()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE :

ORDER OF :
AR K R R K R KRRk Kk ok ko ok ok ok ok ok

L IR S IR JEE TR R T N B R N T N I R BN R K T B B B R R
LR BT B B T R R SRR R T T B N I N R N BT BN R K N 2

void
search_NLR_boundary_line_info(line_info,fp)
struct line_struct *line_info;
FILE *fp;
{
extern int number_of_boundary_input,number_of_boundary_output;
extern int number_of_boundary_control,number_of_boundary_mechanism;

if(line_info == NULL) return;

else
{
save_boundary_line_info(line_info,fp);
search_NLR_boundary_line_info(line_info->left,fp);
search_NLR_boundary_line_info(line_info—>right,fp);
}

return,

F-56

/****#*******t##****t****************************#**********#**********

DATE: 15 Feb 1990
VERSION: 1.0

NAME: search_boundary_info()
MODULE NUMBER:
DESCRIPTION:
This module provides a means of working through the
tree of the line structure in next direction.
ALGORITHM:
PASSED VARIABLES: fp

RETURNS: None

GLOBAL VARIABLES USED: line_rootnode

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: fprintf(), search_NLR_boundary_line_info()
CALLING MODULES: create_temp_boundary_info()

AUTHOR: Intaek Kim
HISTORY:

ABSTRACT DATA TYPE :
ORDER OF :

3ok o koK o o o o 2 oKk o o oK sk o oK K ok KR o K o o N oo o ko oo ek o o K o oo o Kk R Kk ok ok ok Kk f

L 2NN BN SR S TN BEE BN K B B R K S SR SR I K BN R IR B . AR A
T SR R N B N B IR S K T S R R N B R B BN BT IR R .3

search_boundary_info(fp)
FILE *fp;
{
extern struct line_struct *line_rootnode;
struct line_struct *line_info;
extern int number_of_boundary_input,number_of_boundary_output;
extern int number_of_boundary_control,number_of_boundary_mechanism;

fprintf(fp,"confirmed([child_title, is, ’%s’]).\n",
header_rootnode->title.text_string);

line_info = line_rootnode;
wvhile(line_info !'= NULL)

{

search_NLR_boundary_line_info(line_info,fp);

line_info = line_info->next;

}
return(MYTRUE) ;

F-59

[k oo ok oo oo o o oo oo o Ko R R o o oo o o o o o o oo K oo o e ok o o
x

DATE : 4 Feb 1990
VERSION : 1.0

NAME : save_boundary_line_info()

MDDULE NUMBER :

DESCRIPTION :
This module is to save the information of the boundary
arrows in the IDEFO diagram.

ALGORITHM :

PASSED VARIABLES : line_info, fp (File Pointer)

RETURNS : None

GLOBAL VARIABLES USED : None

GLOBAL VARIABLES CHANGED : None

FILES READ : None

FILES WRITTEN : fp

HARDWARE INPUT : None

HARDWARE OUTPUT : None

MODULES CALLED : itoa(), fprintf()

CALLING MODULES : search_NLR_boundary_line_info()

AUTHOR : Intaek Kim
HISTORY :
ABSTRACT DATA TYPE:

ORDER OF:
ol K K OKOR ok ok ok ko kK ok Rk ok kKK Kok kR Rk kK KRRk R Rk [

L R BEE BT BEE I I K U SEE BN R BEE R R K L R K R BN R I
L AR K R JEE EE T BN R R BT R B B B K NN SR R R R R B R

save_boundary_line_info(line_info,fp)

struct line_struct *line_info;

FILE *fp;

{
extern itoa();
extern int number_of_boundary_input,number_of_boundary_output;
extern int number_of_boundary_control,number_of_boundary_mechanism;
char buf [DESCRIPTION_LINE_LENGTH+1];

switch(line_info->start_ICOM[0])
{
cagse 'I’:
number_of_boundary_input += 1;
itoa(number_of_boundary_input,buf);
fprintf(fp,"confirmed([boundary_inputis, is, ’'%s’]).\n",
buf,line_info->label.text_string);

F-60

break;

case 'C’:
number_of _boundary_control += 1;
itoa(number_of_boundary_control,buf);
fprintf(fp, "confirmed([boundary_controls, is, ’%s’]).\n",
buf,line_info->label.text_string);
break;

case 'M’:
number_of_boundary_mechanism += 1;
itoa(number_of_boundary_mechanism,buf);
fprintf(fp,"confirmed([boundary_mechanismys, is, ’%s’]).\n",
buf ,line_info->label.text_string);
break;

default:
if (line_info->end_ICOM([0] == ’0’)
{
number_of_boundary_output += 1;
itoa(number_of_boundary_output,buf);
fprintf(£fp,"confirmed([boundary_output¥s, is, '%s’]).\n",
buf,line_info->label.text_string);

break;

}
}
return(MYTRUE) ;

F-61

/*********************************#****************#******************

DATE : 2 Feb 1990
VERSION : 1.0

NAME : save_header_info()

MODULE NUMBER :

DESCRIPTION :
This module is to save the information of "NODE" and
“TITLE" in the IDEFO diagram.

ALGORITHM :
PASSED VARIABLES : fp (File pointer)

RETURNS : None

GLOBAL VARIABLES USED : header_rootnode
GLOBAL VARIABLES CHANGED : None

FILES READ : None

FILES WRITTEN : fp

HARDWARE INPUT : None

HARDWARE OUTPUT : None

MODULES CALLED : fprintf()

CALLING MODULES : store_predicates()

AUTHOR : Intaek Kim
HISTORY :
ABSTRACT DATA TYPE:
ORDER OF:
#****************#*****************#********************************/
save_header_info(fp)
FILE *fp;
{
extern put_message(),disable_input_window();
extern struct header_struct *header_rootnode;

L 2 B R N BEE BEE S L BN R R BEE N S R 2R R T EEE Y Y R S N
L S BN I SN R N R T B B B JEE R S R BT B K T R R R N S

fprintf(fp,"confirmed([title, is, ’%s’]).\n",
header_rootnode->title.text_string);

fprintf(fp,"confirmed([node, is, ’'%s’]).\n",
header_rootnode->node.text_string);

revurn(MYTRUE) ;

}

F-62

/****#*****************t*************t**#**********#************#******

L IR BN BEE BN SR R S BEE BEE NN BEE R NS BEE R BRI I S A R R NN R SR NN R

DATE: 20 Feb 1990
VERSIOIN: 1.0

NAME: traverse_boxes()
MODULE NUMBER:
DESCRIPTION:

This module provides a means of traversing all the

activity boxes in a diagram and of passing the
information of each box to store_.diagram().

ALGORITHM:
PASSED VARIABLES: fp

RETURNS: None

GLOBAL VARIABLES USED: box_rootnode
GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: save_arrow_info_of_abox()
CALLING MODULES: store_predicates()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE:
ORDER OF:

% ¥ H ¥ X W R X X O R X X ¥ ¥ ¥ K ¥ K K K H X X K H * ¥

***************************#*************#***************************/

vo
tr
F
{

id
averse_boxes(fp)
ILE *fp;

extern struct box_struct *box_rootnode;
struct box_struct *temp_box;

temp_box = box_rootnode;
vhile(temp_box != NULL)
{
save_arrow_info_of_abox(fp,temp_box);
temp_box = temp_box->next;

}

return;

F-63

/*ﬁ*#************************#*************************#**************

DATE: 15 Feb 1990
VERSION: 1.0

NAME: store_predicates()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of saving all information of
arrows(ICOM) attatched on the activity boxes in the IDEFO
diagram.

ALGORITHM:

PASSED VARIABLES: file_name

RETURNS: None

GLOBAL VARIABLES USED: None

GLOVAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: fopen(), put_message(), disable_input_window(),
save_header_info(), traverse_boxes(), fclose()

CALLING MODULES: overwrite_predictes()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE :

ORDER OF :
RAKKE RARROR R KRR A A RAOK AR OK K R O KOROK KR OR ko ok kKR Kk ok Kk ok

L IR 2NN R IR K EE JEE R BEE BEE BN NN R EE R BEE EE N SR EE JEE BEE BRI R K R
LR R K SR S L R SR UEE N SR R NS BN B K BN R R R BN BN BT R BN

void
store_predicates(file_name)
char file_name[];
{
extern put_message(),disable_input_window();
FILE *fp;

if ((fp = fopen(file_name,"w")) == NULL) {
put_message(1,"Unable to open the file for predicates
-- ABORT.");
disable_input_window();
}
else {
disable_input_window();
save_header_info(fp);

F-64

traverse_boxes(fp);
if(fclose(fp) != 0) printf("FILE CLOSE FAILED\n");
}

return;

F-65

/3R o o oo o o o o o o o o o oo o K oo oo o o R o ok K K oK o o oK o o o

DATE: 15 Feb 1980
VERSION: 1.0

NAME: overvrite_predicates()

MODULE NUMBER:

DESCRIPTION:
This module provides a means of overwriting the predicate
forms into the existing flie which is specified by the user*

L R K B . R A

*
3
*
*
*
*
*
x
*
* ALGORITHM: *
* PASSED VARIABLES: window, event, arg(Sun variables) *
* *
* RETURNS: None *
* GLOBAL VARIABLES USED: last_file_name *
* GLOVAL VARIABLES CHANGED: None *
* FILES READ: None *
FILES WRITTEN: file pointer passed to a .pro file *
* HARDWARE INPUT: None *
* HARDWARE OUTPUT: None *
* MODULES CALLED: event_is_up(), event_id(), strecpy(), *
* store_predicates(), put_message(), null_proc(), *
* my_window_set () *
* CALLING MODULES: get_filename_for_predicates() *
* *
* AUTHOR: Intaek Kim *
*+ HISTORY: *
* ABSTRACT DATA TYPE : *
* ORDER OF : *

3K A KK R o KK KK o KRR o Rk A Kk kK K Kk kK
void
overwrite_predicates(window,event,arg)

Window window;

Event =*event;

caddr_t arg;

{

extern null_proc(), put_message(),my_window_set();

char file_name[FILE_NAME_LENGTH + 5];

if ('event_is_up(event)) return;
switch(event_id(event))
{
case MS_LEFT:
strcpy(file_name,last_file_name);

store_predicates(file_name);

F-66

put_message(1,"OVERWRITE DONE -- Make another selection.”);
my_window_set(null_proc);
break;

case MS_RIGHT:
my_window_set(null_proc);
put_message(1,"ABORT overwrite -- Make another selection.");
break;
}

return;

F-67

/*****#*************##***#*********#****#*****#***********************

DATE: 10 Jan 1990
VERSION: 1.0

NAME: get_filename_for_predicates()

MODULE NUMBER:

DESCRIPTION:
The purpose of this module is to get the file name from the
user in which to save the predicates file.

ALGORITHM:
PASSED VARIABLES: None
RETURNS: PANEL_NONE (Sunview variable)

GLOBAL VARIABLES USED: None

GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: put_message(),fix_input(),disable_input_window(),
check_filename(),my_window_set(),stordicates(),
my_move_cursor();

CALLING MODULES: save_predicates()

AUTHOR: Intaek Kim
HISTORY:
ABSTRACT DATA TYPE:
ORDER OF:
AR AR K KR AR KKK KKK AR KR A KKK KK K SR K K K R Kk KK ok [
Panel _setting
get_filename_for_predicates()

{

extern put_message(),disable_input_window();

extern fix_input(), my_window_set(),my_move_cursor();

extern check_filename();

char name[FILE_NAME_LENGTH+1] ,name2[FILE_NAME_LENGTH+5];

int file_type_indicator;

L IR I I S A N R SR T R N B N R K K T B R B R R
L K K I G R JEE R P T B K S K B R R R K R R R R N I R 3

/* get the user input(file name) =/
strcpy(name, (char #)panel_get_value(input_item));
fix_input(name); /* Remove blanks and replace \n to \0 */

if(strcmp(name,"")==0)

{
put_message(1,"OPERATION ABORTED -- NO FILE NAME RECEIVED

F-68

~- Make another selection");
disable_input_window();
return(PANEL_NONE) ;

}

strcpy(name2,name) ;
strcat(name2,".pro");
/* Checks file name of "name2" is what type of file. */

£

ile_type.indicator = check_filename(name2);

switch(file_type_indicator)

}

{
case -1:
store_predicates(name2);
put_message(1,"SAVE DONE -- Make another selection.");
break;
case -2:
disable_input_window();
put_message(1,"Can’t overwrite file -- READ ONLY
-~ Make another selection.");
break;
case -3:
disable_input_window();
put_message(1,"File is a DIRECTORY -- Make another selection.");
break;
case 0:
put_message<1,"FILE EXISTS - IL| to overwrite, - |Rl to ABORT.");
my_move_cursor (INIT_LOC_X,INIT_LOC_Y);
strcpy(last_file_name,name2);
my_window_set(overwrite_predicates);
break;
default:
put_message(1,"Unknown condition -~ Make another selaction");
disable_input_window();
break;
}
return(PANEL_NONE) ;

F-69

[k R Rk R R KK K KKK Ak KR o o o Ok ok K K KK R Rk R R K

DATE: 10 Jan 1990
VERSION: 1.0

NAME: save_predicates()
MODULE NUMBER:
DESCRIPTION:
This module provides a means of asking user for continuing to
save a predicate file(.pro) or to abort this function.

ALGORITHM:
PASSED VARIABLES:

GLOBAL VARIABLES USED: #*box_rootnode, *header_rocotnode
GLOBAL VARIABLES CHANGED:None

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: get_filename_for_predicates()

CALLING MODULES: make_windows()

AUTHOR: Intaek Kim
HISTORY :
ABSTRACT DATA TYPE:
ORDER OF:
KK KR HK K R Ko oK R KoK Kok o ok Ak R KR K ok KK Rk ek K Kok

L BN N EE R BT BEE JEE R N N R L K L R B SEK B R EE BEE R R R B
LS BT R I IR B EE R R BT S R R N R BEE R R R R B

void

save_predicates()

{
extern put_message(), enable_input_window();
extern disable_input_window();
extern struct box_struct *box_rootnode;
extern struct header_struct *header_rootnode;

if (box_rootnode == NULL) {
put_message(1,"FATAL: Can’t save this empty diagram
-- Make another selection.");
disable_input_window();
return;
}
if (strcmp(header_rootnode->title.text_string,"") == 0) {
disable_input_window();
put_message(1,"NO TITLE: Please enter the TITLE

F-70

using EDIT DGM and then RETRY!!");
return;
}
enable_input_window();
panel_set(input_item,
PANEL_VALUE_STORED_LENGTH,FILE_NAME_LENGTH,
PANEL_NOTIFY_PROC, get_filename_for_predicates,
0);
put_message(1,"Enter the file name and hit <Return>.");
return;

F-71

IDEF, Syntaz Ezpert System

This section presents the source code documentations for the IDEF, Syntax

Expert System and contains the inference engine(ISES) and two rule bases: Activity

IDEF, Syntax Rules and Boundary IDEF, Syntax Rules.

F-72

Inference Engine

030 e o ke e o e e o e ko oo o ok ok ok e 3 oK o ok o o ok o ok o i o o ke ok ok ook ok ok 3 o o ok o ok ok ok ok o ok ok ok ok K ok ok

#* % F H % X ¥ X K X ¥ X X *

DATE: 25 Feb. 1850
VERSION: 1.1
NAME: BC3

DESCRIPTION: The purpose of this module is to provide an
inference engine for checking IDEF0O syntax.
BC3 provides a means of a shell for backward
chaining control strategy.

OPERATING SYSTEM: UNIX 4.3

LANGUAGE: Quintus Prolog

CONTENTS: =*

AUTHOR: DR. Frank M. Brown

HISTORY: Version 1.0 - MS-DOS version(DR. Frank M. Brown)

Version 1.1 - UNIX 4.3 version(Intaek Kim)

* % X X O H X K X X X X X ¥ x

sk o ok a3 ke ok o ok e ok ok ok e ok 2k oK ok o 3k ok o ok o ale ok ke o ok ok o ok ok e ok Ok ok ok ok K o ke ok sk 2k ok K ok K 3K ok ok o ok Kk

/***************t***/

/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

BC3 */

*/

A shell for backward-chaining expert systems. */
*/

Each item of knowledge is represented by a triple, i.e., */
a three-element list of the form [Object,Attribute,Value]. */
*/

An associated rule-base supplies the following data: x/
*/

1. A goals-statement, in the form of a list of triples to */
be solved in sequence. The solved triples are printed */

by the shell. */
2. A collection of if-then rules for triples. */
3. A collection of 'fact’ triples, i.e., triples asserted =*/
as known a priori. x/
4. A collection of ’askable’ triples, indicating the forms */

of triples whose values may be obtained from the user. */
6. A collection of ’keep’ triples, indicating the form of =*/

the triples not to be erased from working memory at */
the beginning of a new =ession. x/
*/

Each item of knowledge stored in working memory is of the =/
form confirmed([0bj,Attr,Vall) or denied([0bj,Attr,Vall). =/

*/
To use the system, load BC3, load the appropriate rule- x/

F-73

/* base and type ’start.’ Because BC3’s operator-defini- */

/* tions are used by the rule-bases, BC3 must lcad first. x/
/* */
£ AR A A RO KR KR AR o K R o K oo o ok ok ok ok ok ok ok
[#¥-m=mmmmmmmm e OPERATOR DEFINITIONS ------+---v--co---n- x/
/* */
/* The operators defined below enable the rules in the know- */
/* ledge-base to be expressed in a form more readable than */
/* the standard (prefix) form. */
/* */
2 T e L e L L L T e */

?- op(250, xfx, ::).

?- op(245, xfx, then).

?- op(240, fx, if).

7- op(235, xfx, derived_from).
?7- op(230, xfy, or).

?7- op(225, xfy, and).

?- op(220, fy, not).

[¥m=comsmmesccmccrc e START -====-=-=-ess-ooccveoovoooes */
/* */
/* The procedure ’start’ begins by erasing from working mem- */
/* ory all ’confirmed’ and ’denied’ clauses, except those x/
/* clauses protected by ’keep’ from erasure. The list of */
/* goal-triples is then read from the rule-base and solved in */
/¥ turn by ’solve’. A trace is maintained of the back- */

/* chaining search-tree generated in solving the goals. When */
/* the last of the goal-triples is solved, the values of all x*/

/* goals, except those solved by asking the user directly, */
/* are displayed; the trace is also displayed, if requested, */
/* as a "how" explanation of the solution. x/
/* s/
P et EEE DL LR PP P LI L PRt R e DL L LTS b L DL */
erase_working_memory :-

(confirmed(Triple), /* Erase all working-mem- */
not(keep::Triple), /* ory elements not pro- */
retract(confirmed(Triple)) /* tected by ’keep’ state-*/

; /* ments in the knowledge-*/
denied(Triple), /* base. */

not(keep::Triple),
retract(denied(Triple)) J,
fail.

F-74

erase_working_memory.

start :-
ask_about_verbose,
fail.

start :-
ask_about_checking_type,
fail.

start :-
retractall(why_trace(.)), /* Erase the "why" trace. */
goals:: Goals, /* Find the goal-triples, */
prefix(Goals,PrefixedGoals), /* prefix each of them */
show_head_message, /* with the word ’goal’, =/
solve(Goals, [],PartTrace), /* satisfy all of the x/
!,nl, /* goals and then put the */

append(PrefixedGoals,PartTrace,Trace),
/* list of goals at the */
/* front of the "how" */
ask_about_trace(Trace), /* trace. Supply a "how" */
ask_about_saving_working_memory, /* explanation on request.*/
erase_working_memory,
start_message.

start :- /* If all triples can’t */
nl, /* be solved, announce it.*/
write(’I can’’t solve this problem.’),nl,
start_message.
[Hmmmmmmm e eeee SOLVE ===m====mmmmmmmcmecmceeee */
/% */
/* The predicate ’solve(Goals,Trace,New_trace)’ means that */

/* Goals is a list of goals (expressed as triples), and that */
/* Trace and New_trace are, respectively, the trace-lists be- */

/* and after solution of the goal at the head of the goal- */
/* 1list. The procedure ’solve’ solves each of the goals in */
/* turn. The first step in solving a goal is to erase the */

/* "why" trace and to initialize it with that goal. Thus each */
/* goal is solved with a separate "why" trace. As each rule */
/* 1is encountered in descending through the search-tree for a */
/* given goal, that rule is added to the front of the "why" */
/% trace. */
/* */

F-75

solve([],Trace,Trace).

solve([Goal|Others]),Trace,NewTrace) :

retractall(why_trace(_)),

asserta(why_trace([goal::Goall)),

is_known(Goal,Trace,Tracel),

(confirmed(Goal),!
nl,write_triple(Goal),nl),

solve(Others,Tracel,NewTrace).

write_triple([DObj,Attr,Val]) :-

/* Initialize the "why"
/* trace.

/* Write each triple as
/* it’s solved, but don’t
/* write a triple that’s
/* been told explicitly
/* by the user.

writelist([Obj,’ ’,Attr,’ ’,Val,’.’]).
e Rttt IS_KNOWN =----mmmcmmmmcmomcmmeooe
/*
/* The ’is_known’ procedure maintains a trace of the path of

/*
/*
/*
/*
/*
/*

the solution-tree leading to the triple currently under
consideration. ’is_known(Triple,Trace,NewTrace)’ means
that if reasoning to a certain point has been recorded in
the list ’Trace’, then the additional triple ’Triple’ is

known via reasoning recorded by

the list ’NewTrace’.

/* A triple is not known if it has been denied by the user.

is

_known(Triple,Trace,Trace) :-
denied(Triple),

fail.

/* A triple is known if it is already logged in the trace.

is_known([0,A,V],Trace,[in_trace::[Tag,[0,A,V]]ITrace]) :-

member(Tag::[0,A,V],Trace),

Tag \== confirmed_not,
[}

/* A triple is known if it has been confirmed by the user.

is_known(Triple,Trace, [wvas_told::Triplel|Trace]) :-

F-76

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

confirmed(Triple).
/* A triple is known if it is a fact in the rule-base.

is_known(Triple,Trace, [fact::Triple{Tracel) :-
fact:: Triple.

/* A triple [X,P,Y] is known if the Prolog goal P(X,Y) suc-

/* ceeds, either because P is a built-in predicate, or because
/* the rule-base has prolog-code defining P. The triple

/* [2,member,[1,2]], for example, is converted into the goal
/* member(2,{1,2]), which is then executed by Prolog. To keep
/* non-Prolog-programmers out of trouble, the triple [X,is,Y]
/* is trapped so that it will not be executed as an arithmetic
/* statement. The triple [X,:=,Y] is interpreted as Prolog’s
/* arithmetic or assignment goal, X is Y.

/*

/* This kind of triple, which runs off and does a computation,
/* is called a "procedural attachment”, or '"demon."

is_known(([0Obj,Attr,Val],Trace, [solved::[0bj,Attr,Val] |Trace]) :

atom(Attr), /* Attr must be a legal functor.
(

Attr == :=, !,

Obj is Val /* Interpret ’:=’ as Prolog’s ’'is’.

not (check_reserved_words(Attr)),
/* Interpret everything else, except */

T =.. [Attr,0bj,Vall,/* reserved words for rule-base, as a
/* functor on a two-place */
T, ! /* predicate to be solved as a goal.

).

/* A triple is known if it is the head of a rule and the con-
/* ditions of the rule are satisfied. We put a rule that we
/* encounter at the head of the "why" trace, erasing any du-
/* plicates of the rule that are already in the "why" trace.
/* The "why" trace is maintained in the database, in a clause
/* of the form ’why_trace(<List of goals and rules>)’. This
/* differs from the "how" trace, which is handed as an argu-
/* ment from goal to goal.

is_known(Triple,Trace, [was_proved::[Triple,Rule] [Trace]) :-

member (Rule:: Triple derived_from _Conds,Trace),
]

F-77

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/

is_known(Trpl,Trc,[Rule:: Trpl derived_from Conds|Trci]) :-

/* A condition involving "and", "or",

Rule:: if Conds then Trpl,
(verbose,
writelist([’Trying ’, Rule, ’:: ’, Trpll),nl
not verbose),
why_trace(WhyTrace),
remove(Rule:: Trpl derived_from Conds,WhyTrace,PartWhy),
append([Rule:: Trpl derived_from Conds],PartWhy,NewWhy),
retract(why_trace(_)),
asserta(why_trace(NewWhy)),
is_known(Conds,Trc,Trcl),
(verbose,
writelist([’Proved ’, Rule, ’:: ’, Trpll),nl
not verbose),
]

/* parts are known in suitable combinations.

is_known(Triplesi and Triples2,Trace,Trace2) :-

is_known(Triples1,Trace,Tracel),
is_known(Triples2,Tracel,Trace2).

is_known(Triplesi or _Triples2,Trace,Tracel) :-

is_known(Triples1,Trace,Tracel).

is_known(_Triples!i or Triples2,Trace,Trace2) :-

is

/%
/*
/*
/*

is

is_known(Triples2,Trace,Trace2).

_known(not Triple,Trace, [confirmed_not::TriplelTrace]) :-
not is_known(Triple,Trace,_Tracel).

A triple is known if (a) the rule-base classifies it as
"askable" and if (b) the user confirms it. The user may

request a "why" explanation before responding to the ques-
tion.
_known([0,A,V],Trace, [was_told::[0,A,V]{Trace]):-
askable:: [0,4,_], /* ’ask_about’ causes the side-effect
ask_about([0,A,V]), /* of confirming or denying [0,A,V] in
', /* working memory. The clause succeeds

confirmed([0,A,V]). /% if the triple was confirmed.

F-78

or "not" is known if its */

x/

*/
*/
x/
*/

*/
*/
*/
*/

/*
/*
/*
/*
/*
/*
/*

If the user is asked about a triple [0,A,V] in which V is

a variable, we assume that only one value of V is allowed
for that triple. The askable-fact in the rule-base is to
have the form ’askable::[0,A,LegalVals]’,where LegalVals is
either a string describing legal values or a list enumer-
ating such values. When the user supplies a legal value for
V, the triple is confirmed in working memory.

ask_about([0bj,Attr,Vall) :-
var(Val),

not confirmed([Obj,Attr,_]),

nl, writelist([0Obj,’ ’,Attr,’? ’]),nl,

askable:: [0bj,Attr,LegalValues],

vrite(’Legal values: ’), write(LegalValues), nl,

vrite(’> '), read(Reply),

(/* If the user replies ’why.’, give him an explanation and

/* ask again for a value.
(
means (Reply,why),

explain_why([0bj,Attr,Vall),

ask_about([0Obj,Attr,Vall)
)

/* If LegalValues is a list, check that the reply is in
/* the list.
(

atom(LegalValues) /* LegalValues is a string.

LegalValues = [_[_], /* LegalValues is a list.
member (Reply,LegalValues)
),

assertz(confirmed([0bj,Attr,Reply]l))

write(’Please re-enter your reply.’),nl,
ask_about([0bj,Attr,Val])

).

/* 1f we get to this clause, the user is being asked to reply
/* yes or no concerning a triple [0,A,V] in which V is not a

F-79

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/

/* variable. For given 0 and V, working memory may store more */
/* than one triple, confirmed or denied, having different val- */
/* ues of V. */

ask_about([0bj,Attr,Vall]) :-

not confirmed([Obj,Attr,Val]l),

not denied([0Obj,Attr,Vall),

nl,

writelist([Obj,* ’,Attr,’ ’,Val,’? (yes./no./why.)’]),

nl,write(’> ’),read(Reply),

(
means (Reply,yes),
assertz(confirmed([0bj,Attr,Vall)), !

means (Reply,no),
assertz(denied([0bj,Attr,Ve.])), !

means (Reply,why),
explain_why([Obj,Attr,Vall),

ask_about ([0bj,Attr,Vall)

write(’Please re-enter your reply.’),nl,
ask_about ([0bj,Attr,Val])

ask_about_verbose :-

retractall(verbose),

write(’ Question: Do you want verbose operation(y./n.)? '),

]
read(Reply),nl,nl,
means (Reply,yes),

assert(verbose).

ask_about_checking_type :-
write(’ Question:
Do you wish to check ACTIVITY BOX, BOUNDARY ARROWS °’),nl,

write(’ or to have HELP MESSAGES ?’),nl,nl,

write(’ To check ACTIVITY BOX -> Enter a.’),nl,
write(’ To check BOUNDARY ARROWS -> Enter b.’),nl,
write(’ To have HELP MESSAGE -> Enter h.’),nl,

F-80

write(’Choice : '),

read(Reply),nl,

((Reply == a,
load_sarule('ACTIVITYSARULE.PRO’),
load_working_memory(’CHECKBOX.PRO’),
')

(Reply == b,
load_sarule(’BOUNDARYSARULE.PRO’),
load_working_memory(’CHECKBOUNDARY.PRO’),
')

(Reply == h,
help_messages,

ask_about_checking_type)

(write(’ Please re-enter your choice!!!!’),nl,nl,
ask_about_checking_type)

ask_about_trace(Trace) :-

nl,nl,
write(’ Question: Do you wish to see how this answer ’), nl,
write(’ was arrived at(y./n.)? ?),

read(Reply),
(means(Reply,yes), !,
wvrite_trace(Trace)

true).
[*¥--=-mmmmemee—— ASK ABOUT SAVING WORKING MEMORY -----====-===- */
ask_about_saving_working_memory :- nl,
Write (7 /%skkdkkakkkakkkk ! 18 WORNING ! ! ! sokokokokokok ook dokook ook kokkokokx />) nl,
write(’/* After this session, all working memory elements will */’),nl,
vrite(’/* be erased except for elements being protected by */’),nl,
write(’/* keep statements in the knowledge base. */?),nl,

Write (2 /sxxrmaiokkiokkoiok ok ook ok okiok ok koo ook ok R kokkokkokkok /1) nl
nl,

vrite(’ Question: Do you wish to save the current working memory’),nl,
write(’in a file(y./n.)?),

read(Reply),nl,

F-81

(means(Reply,yes),
save_working_memory,
erase_working_memory, !

erase_working_memory).

explain_why(Triple) :-
why_trace(WhyTrace),
write(’Because::’),nl,
justify(Triple,WhyTrace).

justify(Triple,WhyTrace) :-
member(goal::Goal,WhyTrace),
Triple = Goal,
writelist([’This will satisfy the goal ’,Goall),nl,
nl,
‘.
justify(Triple,WhyTrace) :~
member (Rule::Head derived_from Cs,WhyTrace),
(among(Triple,Cs),
writelist([’I can use ’,Triplel),nl
among(not Triple,Cs),
writelist(['I can use NOT ?,Triplel),nl
),
remove(Rule: :Head derived_from Cs,WhyTrace,NewTrace),
list_known_triples(Cs),
writelist([’ to help satisfy ’,Rule,’:: ’,Head]),nl,nl,
justify(Head,NewTrace).

list_known_triples(Cs) :-
among(Triple,Cs),
(
confirmed(Triple)
fact:: Triple
),
writelist([’ knowing ’,Triplel),nl,
fail.
list_known_triples(.).

among(Triple,Conditions) :-
Triple = Conditions.

F-82

among(Triple, FirstTriple and OtherConditions) :
Triple = FirstTriple
among(Triple,OtherConditions).

among(Triple, FirstTriple or OtherConditions) :-
Triple = FirstTriple

among(Triple,OtherConditions).

vhy :- /* Diagnostic utilitie
why_trace(Trace), /* the why-trace.
vwrite_trace(Trace).

list_why :-
why_trace(Trace),
member(M,Trace),
write(M),nl,nl,
fail.

why_candidates :-
vhy_trace(Trace),
member(_Rule:: Head derived_from Cs,Trace),
among(Triple,Cs),
write(’Head = ’)},write(Head),nl,
write(’Triple = ’),write(Triple),nl,nl,
fail.

write_trace([]) :-

nl.
write_trace([Tag::{0,A,V] |Rest]) :-
(Tag == goal, !, write(’GOAL::)
Tag == fact, !, write(’FACT:: ')

Tag == solved, ', write(’SOLVED:: ’)

Tag == was_told, !, write(’TOLD::)

Tag == confirmed_not, !, write(’CONTRADICTED::
)y
write([0,A,V]),nl,
vrite_trace(Rest).

F-83

s for

")

*/
*/

write_trace([in_trace::[Tag,Triple] |Rest]) :-
[]
write(’KNOWN:: ’),write(Tag),write{’:: ’),write(Triple),nl,
write_trace(Rest).
write_trace([was_proved::[Triple,Rule] |Rest]) :- !,
write(’PROVED:: *),write(Triple),write(’ using ’),write(Rule),nl,
write_trace(Rest).
write_trace([Rule:: Triple derived_from Conditions|Rest]}) :- !,
writelist([Rule,’:: ’,Triple,’ Was Derived From’]),nl,
write_conditions(Conditions),
write_trace(Rest).
write_trace([X|Rest]) :-
write(X),nl,
write_trace(Rest).

write_conditions([X,Y,Z]) :-
tab(8),write([X,Y,Z]),nl.
write_conditions(not [X,Y,Z]) :-
tab(4),write(’NOT ?),write([X,Y,Z]),nl.
write_conditions([X,Y,Z] and Conditions) :- !,
tab(8),write([X,Y,2]),write(’ AND’),nl,
write_conditions(Conditions).
write_conditions(not [X,Y,Z] and Conditions) :- !,
t1b(4) ,write(’NOT ?),write([X,Y,Z]),write(® AND’),nl,
write_conditions(Conditions).
wvrite_conditions(Conditions1 and Conditions2) :-
write_conditions(Conditionsi),tab(8),write(’AND’),nl,
write_conditions(Conditions2).
vrite_conditions([X,Y,Z] or Conditions) :- !,
tab(8) ,write([X,Y,Z]),write(’ OR’),nl,
write_conditions(Conditions).
write_conditions(Conditionsl or Conditions2) :-
write_conditions(Conditions1),tab(8),write(’OR’),nl,
write_conditions(Conditions2).
write_conditions(not [X,Y,Z] or Conditions) :-
tab(4) ,write(’NOT ’),write([X,Y,2]),write(’® OR’),nl,
write_conditions(Conditions).

got_filename(Filename) :-
vrite(’Please supply a filename: '),
read(Filename).

F-84

load_sarule(SAruleType) :-
retractall(_::.),
see(SAruleType),
load_file,
seen.

load_file :-
road(Term),
load(Term).

load(end_of_file) :- !.

load(Term) :-
assertz(Term),
load_file.

load_working_memory(CheckFileType) :-

retractall(confirmed(_)),
retractall(denied(_)),
see(CheckFileType),
load_file,

seen.

save_working_memory :-
get_filename(Filename),
tell(Filename),
save_wme,
told.

save_wme :-
confirmed(Triple),
writeq(confirmed(Triple)),
write(’.’),nl,
fail.

save_wme :-
denied(Triple),
writeq(denied(Triple)),
write(’.’),nl,
fail.

save_wme.

check_reserved_words(Attr) :-

F-85

member (Attr,[’ ’,is,input_is,has_input_number,output_is,
has_output_number,control_is,has_control_number,
mechanism_is,has_mechanism_number,number_is,
should_be,has_number]).

show_head_message :-
nl,nl,
write(® /#xxkxkxxxxxxkxx IDEFO Syntax Messages *kx*ksikkkkkxxkx/’),
nl.

help_messages:-
reconsult (’HELP.PRO’).

not(Predicate) :-
call(Predicate), !, fail.
not(_).

writelist([]).

writelist([XIL]) :-
write(X),
writelist(L).

member (X, [X1_1).
member (X,[_IL]) :-
member (X,L).

append((],L,L).
append ([XIL],M, [XIN]) :-
append(L,M,N).

remove(_,[J1,[1).

remove(X, [X|L],M) :-

;emove(X,L,M).
remove(X, [YIL],[YIM]) :-
remove(X,L,M).

prefix((1,(1).
prefix([GoallGoals], [goal::Goal|PrefixedGoals]) :-
prefix(Goals,PrefixedGoals).

list_working_memory :-
confirmed(Triple),
write(confirmed(Triple)),write(’.’),nl,
fail.

F-86

list_working_memory :-
denied(Triple),
vrite(denied(Triple)),
write(’.’),nl,
fail.
list_working_memory.

means (Reply,yes) :-
member (Reply, [y,yes]).

means (Reply,no) :-
member (Reply, [n,nol).

means (Reply,why) :-
member (Reply, [why,w]).

start_message :-
write (/oo ko kR ok ok ok ok ok ok ko ok kokokokok ok skokokokokskokokokokokokokkokok /2) nl

write(’/* */’),nl,
write(’/x* WELCOME TO IDEFO SYNTAX EXPERT SYSTEMS *x/’),nl,
write(’/* */’),nl,
write(’/* I.Type start. to begin a new session. */’),nl,
write(’/* */?),nl,
write(’/* II. Answer all questions using lower case,ending with#*/’),nl,
write(’/* a period. */’),nl,
write(’/* */?),nl,
vrite(’/* III. Type halt. to exit prolog session. */’),nl,
write(’/x */’),nl,

Write (7 /kkkikorkok kb ok dokok ok ok ok ok kool okl kR Kk ok ook ko kkokokkk /7) nl,
nl.

?- start_message.

F-87

Activity IDEF, Syntax Rules

0 o o ke e o ok ok o o oo o oo o o o o o oo oo o K oo o o o ok o o o ok o o o o o o o oKk ok K K o oK

x *
* DATE: 25 Apr. 1990 *
* VERSION: 1.0 *
* NAME: ACTIVITYSARULE.PRO *
* TITLE: Rule base for an activity box *
* COORDINATOR: Intaek Kim *
* PROJECT: Knowledge base *
* OPERATING SYSTEM: UNIX 4.3 *
* LANGUAGE: Quintus Prolog *
* FILE PROCESSING: This module should be used with an inference =*
* engine, BC3. *
* CONTENTS: Rules for checking IDEFO syntax of an activity box. *
* HISTORY: *

o e 2k o 3 o e ok ok o ak 3 ok ok ok e kK ok ok ok dk ok ok ko ok ok 3K R ok o 3K K 3k s 2k 3k 3 ak 3k ak ok 2 2k ok 3k ok 3k ok ok sk ak ok ke ke ok sk ok ok ok ok Xk

[k ook ko okkok GOALS dkkakkokokok ok kokokokokok ok skokokokokok ok ok /
/* These lists of goal present the resulting message. */

goals:: [[’Name’, * ’, _Name], /* Goal for NAME of the box */
[’Input’, * ’, _Input], /* Goal for INPUT of box */
[’Output’, * ’, _Output], /* Goal for OUTPUT of box */
[’Control’, * *, _Control],/* Goal for CONTROL of box */
{’Mechanism’, ’ ’, _Mechanism], /* Goal for MECHANISM */
[’Number’, * ?, _Number]]. /* Goal for the box NUMBER */

[Rrkkkkkkokk ok kokkkkokkkokk RULES koo ok ko ko ko dok ok ok dok ¥k /
[Rxkkkikkrkkkkik About Activity Name #kikisikiikikiokionksok /
rulel :: if [activityname, is, '’]
then [’Name’, * ?, °’ --> ERROR: No Activity Name.
Each box must have an activity name’].

rule2 :: if [activityname, is, Activity]
and [Activity, \==, *’]
then [’Name’, ’ ’, °? ~-> CORRECT: Activity Name is 0K’].

[xerkikkkkrkakkekakrk About Input *kkkksiikkkkkikknkkkkkxk /
rule3 :: if [activityname, is, Activity]
and [Activity, input_is, null]
then [’Input’, ’ ’, ’--> CORRECT: No Input Arrows, however,
Input is 0K’].

rule4 :: if [activityname, is, Activity]

F-88

and [Activity, input_is, *’]
then [’Input’, * ?, ° --> ERROR: No Input Label

Each Input arrow must have an input label’].

rule5 :: if [activityname, is, Activity]
and [Activity, has_input_number, InputNumber]

and [InputNumber, >, 5]
then [’Input’, * ?, ? -~> RECOMMEND:

You would better reduce the number of Input arrows
from 0 to 5’].

if [activityname, is, _Activity]

ruleb ::
then [’Input’, * ’, ?’ --> CORRECT: Input is OK'].

[rorokookkdkobiokkkobkk About QUutput sdokkskoksokskaokkokskokdok ko hokok /
/* If there is a box and the output of the box is empty, */

/* then there is no output/name. */

: if [activityname, is, Activity]

and [Activity, output_is, null]
then [’Output’, * ’, > --> ERROR: You should have at least

one output arrow’].

rule7 :

if [activityname, is, Activity]

rule8 ::
and [Activity, output_is, ’’]
then [’Output’, ’ ’, ? --> ERROR: No Output Label.
Each Output Arrow should have an output Label’].
rule9 :: if [activityname, is, Activity]

and [Activity, has_output_number, OutputNumber]

and [OutputNumber, >, 5]
then [’Output’, * ?’, °? --> RECOMMEND:

You would better reduce the number of Output arrows
from 1 to 5°].

rule10 :: if [activityname, is, _Activity]
then [’Output’, * ’, * --> CORRECT: Output is 0K’].

/R krndokkkkkkkkkkkik About Control sxikkkikikkkkkmkkkx/

ruleii :: if [activityname, is, Activity]
and [Activity, control_is, null]

then [’Control’, ’ ’, * =--> ERROR: You should have at least

one control arrow’].

rule12 :: if [activityname, is, Activity]

F-89

and [Activity, control_is, ’’]
then [’Control?’, ’ ’, * =-> ERROR: No Control Label.
Each Control Arrow should have a control Label’].

rulel3 :: if [activityname, is, Activity]
and [Activity, has_control_number, ControlNumber]
and [ControlNumber, >, 5]
then [’Control?’, * ’, ? --> RECOMMEND:
You would better reduce the number of Control arrows
from 1 to 5°].

rulel4 :: if [activityname, is, _Activity]
then [’Control’, * ?, ? --> CORRECT: Control is 0K’].

[REExERekkkk etk About Mechanism *¥xkikkikkkkkkidkkk/
rulelb :: if [activityname, is, Activity]
and [Activity, mechanism_is, ’’]
then [’Mechanism’, ’> ’, ’--> ERROR: No Mechanism Label.
Each Mechanism Arrow should have a mechanism Label’].

rulei6 :: if [activityname, is, Activity]
and [Activity, mechanism_is, null]
then [’Mechanism’, ® *, ’-~> CORRECT: No Mechanism Arrows, however,
Mechanism is 0K’].

rulel7 :: if [activityname, is, Activity]
and [Activity, has_mechanism_number, MechanismNumber]
and [MechanismNumber, >, 5]
then [’Mechanism’, * ?, ’--> RECOMMEND:
You would better reduce the number of Mechanism arrows
within 0 to 5°].

rulei8 :: if [activityname, is, _Activity]
then [’Mechanism’, ’ ’, ’--> CORRECT: Mechanism is 0K'].

[Hrkrkkkknkkkkkkkrkkik Activity Number *xkxkkikkikikikkikkxkkkk/
/* If there is a box and the number of the box is 0, that is, */
/* the box has no number, the box must be the top most box. */

rulel9 :: if [title, is, Activity]
and [Activity, number_is, Number]
and [Number, ==, 0]
then [’Number’, ’ ’, ’--> CORRECT: Activity number is OK.
This activity must be the top most level box’].

F-90

rule20 :: if [title, is, Activity]
and [Activity, number_is, Number]
and [Number, \==, 0]
then [’Number’, ’> ?, ’--> ERROR: This activity must be
the top most level box.
This activity don’’t need a box number’].

/* Each activity box must have a number for the box within */
/* 1 through 6 except for the top most level activity box. */

/* If there is a box and the number of the box is 0, then */
/* there is no number in the box. */

rule21 :: if [Activity, number_is, Number]
and [title, is, ParentActivity]
and [ParentActivity, \==, Activity]
and [Number, ==, 0]
then [’Number®, ’ ?, ’--> ERROR: Activity box has no number.
The activity box should have a box number from 1 to 6.

(If the activity box is the top most level one, then
ignore this message)’].

rule22 :: if [Activity, number_is, _Number]
and [title, is, ParentActivity]
and [ParentActivity, \==, Activity]
and [activity_number, is, in_legal_range]

then [’Number’, ’ °’, ’--> CORRECT: Activity box number
is 0K.’].

rule23 :: if [Activity, number_is, _Number]
and [title, is, ParentActivity]
and [ParentActivity, \==, Activity]
and [activity_number, is, in_illegal_range]

then [’Number’, * ’, ’ --> ERROR: Activity box number is
not proper.

The recommended range of number is 1 to 6’].

/* These rules are the second level rules. */
rule24 :: if [_Activity, number_is, Number]
and [Number, >, 0]
and [Number, <, 7]
then [activity_number, is, in_legal_range].

rule25 :: if [_Activity, number_is, Number]
and [Number, <, 0]

F-91

rule26 ::

then [activity_number, is, in_illegal_range].
if [_Activity, number_is, Number]

and [Number, >, 6]
then [activity_number, is, in_illegal_range].

F-92

Boundary IDEF, Syntax Rules

% 3 e 3 o o ko o ke s o ok ok o ok ok ok ok o ks o ok o o ok ok ok ke 3k ok ok ok ok 3ok ok oo 3 o ok k3 ok ok o k3 ok ok ok o ke 3k ok ok ok ok ok ok ok ok ok ok

DATE: 25 Apr. 1990

VERSION: 1.0

FILE NAME: BOUNDARYSARULE.PRO

TITLE: Rule base for boundary arrows
COORDINATOR: Intaek Kim

PROJECT: Knowledge base

OPERATING SYSTEM: UNIX 4.3

LANGUAGE: Quintus Prolog

BC3.

LR BEE N BN R R K JEE R K R I

HISTORY:

FILE PROCESSING: This module should be used an inference engine

CONTENTS: Rules for checking IDEFO syntax of boundary arrows.

#* % X H OE O X X X F B ¥ ¥

ok 3k ok ok ok ok 3k ok ke e e 3 e e e e ok e e e a3k ok sk ke ae de 2k kol ok 3 oK ol ok sk ok sk ok ok ok ke ak ok sk 3k ok K ok dkooeokok XKook ok koK

[RF xRk kR kokk GOALS dkkoskokk ok ok oo ok koo ok ook ok okokok ok ko /
/* These lists of goal present the resulting message. */

goals:: [[’Boundary Input’, * *, _Input],

/* Goal for boundary input in any IDEFO diagram */

{’Boundary Output’, ' ', _Output],

/* Goal for boundary output in any IDEFO diagram */
[’Boundary Control’, ’ ’, _Controll],

/* Goal for boundary control in any IDEFO diagram */
[’Boundary Mechanism’, ' ’, _Mechanism]

/* Goal for boundary mechanism in any IDEFO diagram */

1.

[Hrnknknionkkkknkrkikakk RULES #tksdrkkmikikkikiokirknk/
/***+ When there is no information of parent box *¥*/

rulel :: if [child_title, is, ParentBox]

and not [activityname, is, ParentBox]

then [boundarysarule, is, stalled].

rule2 :: if [boundarysarule, is, stalled]
then [’Boundary Input’, ’ °*, ?’
--> 11 THIS IS A FATAL ERROR !!!’],

rule3 :: if [boundarysarule, is, stalled]
then [’Boundary Output’, ' ', °

--> There is nothing about Parent activity’].

rule4 :: if [boundarysarule, is, stalled]

F-93

then [’Boundary Control’, ’ ?’, °

--> Maybe you have tried to check syntax with

a file without PARENT ACTIVITY BOX information’].

ruleS :: if [boundarysarule, is, stalled]

then [’Boundary Mechanism’, ’> ’, ’

~-> PLEASE START AGAIN !!!’].

[akkrkrrrkknkinkirsr About Boundary Input »#sssksssiksibksnks/

/*

No label on boundary input arrow */

rule6 :: if [boundary_input, is, ’’]

then [’Boundary Input’, ’ ’,’

--> ERROR: No boundary input label’].

/*

No label on input arrow of the parent box */

rule? :: if [child_title, is, ParentBox]

and [ParentBox, input_is, ’’]
then [’Boundary Input’,’ ’,’

--> ERROR: Parent Input has no label’].

/*
/%
/*
/*

The number of Input arrow(s) of the Parent Activity =/
box is differ from that of the Boundary Input arrow(s).*x/
The number of the Parent Input arrow(s) > The number */
of the Boundary Input arrow(s). x/

rule8 :: if [child_title, is, ParentBox]

and [ParentBox, has_input_number, InputNumber]
and [boundary_input, has_number, BoundInNumber]
and [InputNumber, >, BoundInNumber]

then [’Boundary Input’,’ ’,’

--> ERROR: The number of Input arrow(s) of

/*
/*
/*
/*

Parent Activity box is greater than that of
Boundary Input arrow(s) -- Must have the same number’].

The number of Input arrow(s) of the Parent Activity box is
differ from that of the Boundary Input arrow(s).
The number of the Parent Input arrow(s) < The number of the
Boundary Input arrow(s).

rule9 :: if [child_title, is, ParentBox]

and [ParentBox, has_input_number, InputNumber]
and [boundary_input, has_number, BoundInNumber]
and (InputNumber, <, BoundInNumber]

then [’Boundary Input’,’ ’,’

~--> ERROR: The number of Input arrow(s) of

Parent Activity box is less than that of
Boundary Input arrow(s) -- Must have the same number’].

F-94

*/
*/
*/
*/

/* If the number of arrows is greater than i ve, recomend x*/
/* about how many the number of arrows exists. */
rulel0 :: if [boundary_input, has_number, BoundInNumber]

and [child_title, is, ParentBox]

and [ParentBox, has_input_number, BoundInNumber]

and [BoundInNumber, >, 5]

then [’Boundary Input’, ’ *, ’ --> RECOMMEND:
You would better reduce the number of arrows to six
below’].

/* No boundary Input arrow and No Input at Parent Box
rulell :: if [child_title, is, ParentBox]
and [boundary_input, is, null]
and [ParentBox, input_is, null]
then [’Boundary Input’, ' ’,’
--> CORRECT: Boundary Input is OK’].

/* Consider the correct case acording to the Number of */
/* Input arrow(s). */
rulei2 :: if [boundary_input, has_number, BoundInNumber]
and [child_title, is, ParentBox]
and [ParentBox, has_input_number, BoundInNumber]
then [case_of_boundary_in, is, BoundInNumber].

/* Case 1: The number of Boundary Input arrow is 1. */
rulei3 :: if [case_of_boundary_in, is, 1]
and {child_title, is, ParentBox]
and [ParentBox, input_is, ParentInput]
and [boundary_input1, is, ParentInput]
then [’Boundary Input’, ' ’,’
--> CORRECT: Boundary Input is 0K’].

/* Case 2: The number of Boundary Input arrows is 2. */
rulei4 :: if [case_of_boundary_in, is, 2]

and [boundary_inputi, is, ParentInputi]

and [boundary_input2, is, ParentInput2]

and [child_title, is, ParentBox]

and [ParentBox, input_is, ParentlInputi]

and [ParentBox, input_is, ParentInput2]

then [’Boundary Input’, ’ ’,’

--> CORRECT: Boundary Input is 0K’].

/* Case 3: The number of Boundary Input arrows is 3. =/
ruleld :: if [case_of_boundary_in, is, 3]

F-95

and [boundary_inputi, is, ParentInputi]
and [boundary_input2, is, ParentInput2)
and [boundary_input3, is, ParentInput3]
and [child_title, is, ParentBox]
and ([ParentBox, input_is, ParentInputi]
and [ParentBox, input_is, ParentInput2]
and [ParentBox, input_.is, ParentInput3]
then [’Boundary Input’, *' ’,°
-=> CORRECT: Boundary Input is 0K’].

/* Case 4: The number of Boundary Input arrows is 4. */

rule16 :: if [case_of_boundary_in, is, 4]
and [boundary_inputi, is, ParentInputil]
and [boundary_input2, is, ParentlInput?2)
and [boundary_input3, is, ParentlInput3]
and [boundary_input4, is, ParentlInput4]
and [child_title, is, ParentBox]
and [ParentBox, input_is, ParentInputi]
and [ParentBox, input_is, ParentInput2]
and [ParentBox, input_is, ParentInput3]
and [ParentBox, input_is, ParentInput4]

then [’Boundary Input’, ’ ’,°
-~> CORRECT: Boundary Input is O0K’].

/* Case 5: The number of Boundary Input arrows is 5. */
rulei7 :: if [case_of_boundary_in, is, 5]

and [boundary_inputl, is, ParentInputi]

and (boundary_input2, is, ParentlInput2]

and [boundary_input3, is, ParentInput3]

and [boundary_input4, is, Parentlnput4]

and [boundary_input5, is, ParentlnputS]

and [child_title, is, ParentBox]

and [ParentBox, input_is, ParentInputi]

and [ParentBox, input_is, ParentInput2]

and [ParentBox, input_is, ParentInput3]

and [ParentBox, input_is, Parentlnput4]

and [ParentBox, input_is, ParentInput5)

then [’Boundary Input’, ’ °*,° =-=> CORRECT: Boundary Input

is O0K’].

/* Boundary Input is not matched */

/* This rule includes all No_match case though both of */
/* parent and child have the same number of input */
/* arrou(s). */
rulei8 :: if [child_title, is, ParentBox]

F-96

and [activityname, is, ParentBox]
then [’Boundary Input’,’ ’,’--> ERROR: Boundary Input is not
matched. -- You may have at least one unmatched label’].

[Aokkkdkokkokkkkokkkkokkkkk About Boundary Output *ksckikksdokskkdokkkokdokkkkksdkx [
rule19 :: if ([boundary_output, is, ’’]
then [’Boundary Output’, ’ ’,’ ~-> ERROR: No boundary output
label’].

rule20 :: if [child_title, is, ParentBox]
and [ParentBox, output_is, ’’]
then [’Boundary Output’,’ ’,’ --> ERROR: Parent Output has no
label’].

rule2! :: if [boundary_output, is, null]
then [’Boundary Output’,’ ’,’ =-> ERROR: No boundary output
arrow.
Should have at least one boundary output arrow’].

rule22 :: if [child_title, is, ParentBox]
and [ParentBox, output_is, null]
then [’Boundary Output’, ' *, °’
-=> ERROR: No parent output arrow.
Should have at least one parent output arrow’].

/* The number of Output arrow(s) of the Parent Activity =*/
/* box is differ from that of the Boundary Output arrow(s).*/
/* The number of the Parent Output arrow(s) > The number */
/* of the Boundary Output arrow(s). */
rule23 :: if [child_title, is, ParentBox]
and [ParentBox, has_output_number, OutputNumber]
and [boundary_output, has_number, BoundOutNumber]
and [OutputNumber, >, BoundOutNumber]
then [’Boundary Output’,’ ’,’ --> ERROR: The number of Output
arrow(s) of Parent Activity box is greater than that of
Boundary Output arrow(s) -- Must have the same number’].

/* The number of Output arrow(s) of the Parent Activity box is */

/* differ from that of the Boundary Output arrow(s). */
/* The number of the Parent Qutput arrow(s) < The number of the */
/* Boundary Output arrow(s). */

rule24 :: if [child_title, is, ParentBox]
and [ParentBox, has_output_number, OutputNumber]
and [boundary_output, has_number, BoundOutNumber]
and [OutputNumber, <, BoundOutNumber]

F-97

then [’Boundary Output’,’ ’,? ~-> ERROR: The number of Qutput

arrovw(s) of Parent Activity box is less than that of
Boundary Output arrow(s) -- Must have the same number’].

/* 1f the number of arrows is greater than five, recomend */
/* about how many the number of arrows exists. */
rule25 :: if [boundary_output, has_number, BoundOutNumber]

and [child_title, is, ParentBox]

and [ParentBox, has_output_number, BoundOutNumber]

and [BoundOutNumber, >, S]

then [’Boundary Output’, ' ’, ? --> RECOMMEND:
You would better reduce the number of arrows to six
below’].

/* Consider the correct case acording to the Number of */
/* Qutput arrow(s). */
rule26 :: if [boundary_output, has_number, BoundOutNumber]
and [child_title, is, ParentBox]
and [ParentBox, has_output_number, BoundOutNumber]
then [case_of_boundary_out, is, BoundOutNumber].

/* Case 1: The number of Boundary Output arrow is 1. */
rule27 :: if [case_of_boundary_out, is, 1]
and [boundary_outputl, is, ParentOutput]
and [child_title, is, ParentBox]
and [ParentBox, output_is, ParentOutput]
then [’Boundary Output’, ’ *,’ =--> CORRECT:
Boundary Output is O0K’].

/* Case 2: The number of Boundary Output arrows is 2. */
rule28 :: if [case_of_boundary_out, is, 2]

and [boundary_outputl, is, ParentOutputi]

and [boundary_output2, is, ParentOutput2]

and [child_title, is, ParentBox]

and [ParentBox, output_is, ParentOutputi]

and [ParentBox, output_is, ParentOutput2]

then [’Boundary Output’, ’ *,” --> CORRECT:
Boundary Output is 0K’].

/* Case 3: The number of Boundary Output arrows is 3. x*/
rule29 :: if [case_of_boundary_out, is, 3]

and [boundary_outputi, is, ParentOutputi]

and [boundary_output2, is, ParentOutput2]

and [boundary_output3, is, ParentOutput3]

and [child_title, is, ParentBox]

F-98

and [ParentBox, output_is, ParentOutputi]

and [ParentBox, output_is, ParentOutput2]

and [ParentBox, output_is, ParentOutput3]

then [’Boundary Output’, ’ ’,’ -=> CORRECT:
Boundary Output is O0K’].

/* Case 4: The number of Boundary Output arrows is 4. ¥/
rule30 :: if [case_of_boundary_out, is, 4]
and [boundary_outputl, is, ParentOutputi]
and [boundary_output2, is, ParentOutput2]
and [boundary_output3, is, ParentOutput3]
and [boundary_output4, is, ParentOutput4]
and [child_title, is, ParentBox]
and [ParentBox, output_is, ParentOutputi]
and [ParentBox, output_is, ParentOutput?2]
and [ParentBox, output_is, ParentOutput3]
and [ParentBox, output_is, ParentOutput4]
then [’Boundary Output’, * ’,’ --> CORRECT:
Boundary Output is OK’].

/* Case 5: The number of Boundary Output arrows is 5. =/

rule3l :: if [case_of_boundary_out, is, 5]
and [boundary_outputi, is, ParentOutputi]
and [boundary_output2, is, ParentOutput2]
and [boundary_output3, is, ParentOutput3]
and [boundary_output4, is, ParentOutput4]
and [boundary_output5, is, ParentOutput5]
and [child_title, is, ParentBox]
and [ParentBox, output_is, ParentOutputi]
and [ParentBox, output_is, ParentOutput2]
and [ParentBox, output_is, ParentOutput3]
and [ParentBox, output_is, ParentOutput4]
and [Paren:Box, output_is, ParentOutput5]

then [’Boundary Output’, * ’,° --> CORRECT:
Boundary Dutput is 0K’].

/* Boundary Output is not matched */
/* This rule includes all No_match case though both of */
/* parent and child have the same number of output */
/* arrow(s). */
rule32 :: if [child_title, is, ParentBox]
and [activityname, is, ParentBox]
then [’Boundary Output’,’® ’,’--> ERROR: Boundary Output is not
matched. -- You may have at least one unmatched label’].

F-99

[exkrknkkkkrkkkkk About Boundary Control ##kkikikkskkikikkknk/
rule33 :: if [boundary_control, is, ’’]

then ['Boundary Control’, * ’,’

--> ERROR: No boundary control label’].

rule34 :: if [child_title, is, ParentBox]
and [ParentBox, control_is, ’’]
then [’Boundary Control’,’ ’,°
--> ERROR: Parent Control has no label’].

rule35 :: if [boundary_control, is, null]
then [’Boundary Control’,’ °’,’
--> ERROR: No boundary control arrow.
Should have at least one boundary control arrow’].

rule36 :: if [child_title, is, ParentBox]
and [ParentBox, control_is, null]
then [’Boundary Control’, * ’, ?
--> ERROR: No parent control arrow.
Should have at least one parent control arrow’].

/* 1f the number of arrows is greater than five, recomend x*/
/* about how many the number of arrows exists. */
rule37 :: if [boundary_control, has_number, BoundConNumber]
and [child_title, is, ParentBox]
and [ParentBox, has_control_number, BoundConNumber]
and [BoundConNumber, >, §]
then [’Boundary Control’, ’ ’, ? ~--> RECOMMEND:
You would better reduce the number of arrows to six
below’].

/* Consider the correct case acording to the Number of */
/* Control arrow(s). x/
rule38 :: if [boundary_control, has_number, BoundConNumber)
and [child_title, is, ParentBox]
and [ParentBox, has_control_number, BoundConNumber]
then [case_of_boundary_con, is, BoundConNumber].

/% Case 1: The number of Boundary Control arrow is 1. */
rule39 :: if [case_of_boundary_con, is, 1]
and [boundary_controli, is, ParentControll
and [child_title, is, ParentBox]
and [ParentBox, control_is, ParentControl]
then [’Boundary Control’, ' *,’ =--> CORRECT: Boundary
Control is OK'].

F-100

/* Case 2: The number of Boundary Control arrows is 2.
rule40 :: if [case_of_boundary_con, is, 2]

and
and
and
and
and

then [’Boundary Control’, ’ *,?

[boundary_controll, is, ParentControli]
[boundary_control2, is, ParentControl2]
[child_title, is, ParentBox]

[ParentBox, control_is, ParentControli]
[ParentBox, control_is, ParentControl2]

Control is 0K’).

/* Case 3: The number of Boundary Control arrows is 3.
rule4l :: if [case_of_boundary._con, is, 3]

and
and
and
and
and
and
and

then [’Boundary Control’, ’ ?*,°

[boundary_controll, is, ParentControli]
[boundary_control2, is, ParentControl2]
[boundary_control3, is, ParentControl3]
[child_title, is, ParentBox]

[ParentBox, control_is, ParentControli]
[ParentBox, control_is, ParentControl?2]
[ParentBox, control_is, ParentControl3]

Control is 0K’].

/* Case 4: The number of Boundary Control arrows is 4.
rule42 :: if [case_of_boundary_con, is, 4]

and
and
and
and
and
and
and
and
and

then [’Boundary Control’, * ’,’

[boundary_controll, is, ParentControli]
[boundary_control2, is, ParentControl2]
[boundary_control3, is, ParentControi3]
[boundary_control4, is, ParentControl4]
[child_title, is, ParentBox]

[ParentBox, control_is, ParentControli1]
[ParentBox, control_is, ParentControl2]
{(ParentBox, control_is, ParentControl3]
[ParentBox, control_is, ParentControl4]

Control is OK’].

/* Case 5: The number of Boundary Control arrows is 5.
rule43 :: if [case_of_boundary_con, is, 5]

and
and
and
and
and
and

[boundary_controll, is, ParentControli]
[boundary_control2, is, ParentControl2]
[boundary_control3, is, ParentControl3]
[boundary_control4, is, ParentControl4]
[boundary_control5, is, ParentControl5]
[child_title, is, ParentBox]

F-101

*/

-==> CORRECT: Boundary

*/

~~> CORRECT: Boundary

*/

~=> CORRECT: Boundary

*/

and [ParentBox, control_is, ParentControli]
and [ParentBox, control_is, ParentControl2]
and [ParentBox, control_is, ParentControl3]
and [ParentBox, control_is, ParentControl4]
and [ParentBox, control_is, ParentControl5]
then [’Boundary Control’, ' ’,’ =--> CORRECT: Boundary
Control is 0K’].

/* Boundary Control is not matched */
/* This rule includes all No_match case though both of */
/* parent and child have the same number of control */
/* arrow(s). */
rule44 :: if [child_title, is, ParentBox]
and [activityname, is, ParentBox]
then [’Boundary Control’,’ ’,’-> ERROR: Boundary Control is not
matched. -- You may have at least one unmatched label’].

[¥krkikkkakkkkkkk About Boundary Mechanism skikkkicksiskkiokk/
rule45 :: if [boundary_mechanism, is, ’’]

then [’Boundary Mechanism’, * ’,’

--> ERROR: No boundary mechanism label’].

rule46 :: if [child_title, is, ParentBox]
and [ParentBox, mechanism_is, ’’]
then [’Boundary Mechanism’,’ ’,’
--> ERROR: Parent Mechanism has no label’].

/* The number of Mechanism arrow(s) of the Parent Activity */
/* box is differ from that of the Boundary Mechanism arrow(s).*/
/* The number of the Parent Mechanism arrow(s) > The number */
/* of the Boundary Mechanism arrow(s). */
rule47 :: if [child_title, is, ParentBox]
and [ParentBox, has_mechanism_number, MecNumber]
and [boundary_mechanism, has_number, BoundMecNumber]
and [MecNumber, >, BoundMecNumber]
then [’Boundary Mechanism’,’ ’,’--> ERROR: The number of
Mechanism arrow(s) of Parent Activity box is greater than that
of Boundary Mechanism arrow(s) -- Must have the same
number’].

/* The number of Mechanism arrow(s) of the Parent Activity box is */

/* differ from that of the Boundary Mechanism arrow(s). */
/* The number of the Parent Mechanism arrow(s) < The number of the */
/* Boundary Mechanism arrow(s). x/

ruled48 :: if [child_title, is, ParentBox]

F-102

and [ParentBox, has_mechanism_number, MecNumber]

and [boundary_mechanism, has_number, BoundMecNumber]

and [MecNumber, <, BoundMecNumber]
then [’Boundary Mechanism’,’ ’,’--> ERROR: The number of
Mechanism arrow(s) of Parent Activity box is less than
that of Boundary Mechanism arrow(s) -- Must have the same
number’].

/* If the number of arrows is greater than five, recomend */
/* about how many the number of arrows exists. */
rule49 :: if [boundary_mechanism, has_number, BoundMecNumber]
and [child_title, is, ParentBox]
and [ParentBox, has_mechanism_number, BoundMecNumber]
and [BoundMecNumber, >, 5]
then [’Boundary Mechanism’, ’ ’, ’--> RECOMMEND:
You would better reduce the number of arrows to six
below’].

/* No boundary Mechanism arrow and No Mechanism at Parent Box */
rule50 :: if [child_title, is, ParentBox]
and [boundary_mechanism, is, null]
and [ParentBox, mechanism_is, null]
then [’Boundary Mechanism’, ’ ’,’--~> CORRECT: Boundary
Mechanism is 0K’].

/* Consider the correct case acording to the Number of */
/* Mechanism arrow(s). */
rule51 :: if [boundary_mechanism, has_number, BoundMecNumber]
and [child_title, is, ParentBox]
and [ParentBox, has_mechanism_number, BoundMecNumber]
then [case_of_boundary_mech, is, BoundMecNumber].

/* Case 1: The number of Boundary Mechanism arrow is 1. */
rule52 :: if [case_of_boundary_mech, is, 1]
and [child_title, is, ParentBox]
and [ParentBox, mechanism_is, ParentMech]
and [boundary_mechanismi, is, ParentMech]
then [’Boundary Mechanism’, * ’,’--> CORRECT: Boundary
Mechanism is OK’].

/* Case 2: The number of Boundary Mechanism arrows is 2. */
rule53 :: if [case_of_boundary_mech, is, 2]

and [boundary_mechanismi, is, ParentMechi]

and [boundary_mechanism2, is, ParentMech2]

and [child_title, is, ParentBox]

F-103

and [ParentBox, mechanism_is, ParentMechi]
and [ParentBox, mechanism_is, ParentMech?2]
then [’Boundary Mechanism’, ’ ?,’--> CORRECT: Boundary
Mechanism is 0K'].

/* Case 3: The number of Boundary Mechanism arrows is 3. */
rule54 :: if [case_of_boundary_mech, is, 3]

and [boundary_mechanismi, is, ParentMechi]

and [boundary_mechanism2, is, ParentMech2]

and [boundary_mechanism3, is, ParentMech3]

and [child_title, is, ParentBox]

and [ParentBox, mechanism_is, ParentMechi]

and [ParentBox, mechanism_is, ParentMech2]

and [ParentBox, mechanism_is, ParentMech3]

then [’Boundary Mechanism’, ® ’,’--> CORRECT: Boundary
Mechanism is 0K’].

/* Case 4: Te number of Boundary Mechanism arrows is 4. */
rule55 :: if [case_of_boundary_mech, is, 4]

and [boundary_mechanismi, is, ParentMechi]

and [boundary_mechanism2, is, ParentMech2]

and [boundary_mechanism3, is, ParentMech3]

and [boundary_mechanism4, is, ParentMech4]

and [child_title, is, ParentBox]

and [ParentBox, mechanism_is, ParentMechi]

and [ParentBox, mechanism_is, ParentMech?2]

and [ParentBox, mechanism_is, ParentMech3]

and [ParentBox, mechanism_is, ParentMech4]

then [’Boundary Mechanism’, ’ ’,’--> CORRECT: Boundary
Mechanism is 0K’].

/* Case 5: The number of Boundary Mechanism arrows is 5. */
ruleb6 :: if [case_of_boundary_mech, is, 5]

and [boundary_mechanismi, is, ParentMechi]

and [boundary_mechanism2, is, ParentMech2]

and [boundary_mechanism3, is, ParentMech3]

and [boundary_mechanism4, is, ParentMech4]

and [boundary_mechanism5, is, ParentMechS§]

and {child_title, is, ParentBox]

and [ParentBox, mechanism_is, ParentMechi]

and [ParentBox, mechanism_is, ParentMech2]

and [ParentBox, mechanism_is, ParentMech3]

and [ParentBox, mechanism_is, ParentMech4]

and [ParentBox, mechanism_is, ParentMechS5]

then [’Boundary Mechanism’, ’ ’,’--> CORRECT: Boundary

F-104

Mechanism is 0K’].

/* Boundary Mechanism is not matched */
/* This rule includes all No_match case though both of */
/* parent and child have the same number of mechanism */
/* arrow(s). */
rule57 :: if [child_title, is, ParentBox]
and [activityname, is, ParentBox]

then [’Boundary Mechanism’,’ ’,’
-=> ERROR: Boundary Mechanism is not

matched. -- You may have at least one unmatched label’].

F-105

10.

11.

12.

13.

14.

Bibliography

Blackburn, Mark R. "Using Expert Systems to Construct Formal Specifica-
tions,” IEEE Ezpert. Al/Software Engineering, Spring, 1989.

Blackman, Michael J. "CASE for Expert Systems,” AI Ezxpert, Vol.5, No.2:27-
31, Feburary 1990.

Booch, Grady. Software Engineering with Ada. Benjamin and Cummings Pub-
lishing Company, Menlo Park CA, 1987.

Bratko, Ivan. Prolog Programming for Artificial Intelligence. England: Addison-
Wesley Publishing Company, 1987.

Brown, Donald E. "Inference Engines for the Mainstream,” AI Ezpert, Vol.5,
No.2:32-37, Feburary 1990.

Brown, Frank M. A Shell for Backward-Chaining Ezpert Systems. Handout,
Department of Electrical and Computer Engineering, Air Force Institute of
Technology(AU), Wright-Patterson, OH, 1989.

Charniak, Eugene. and McDermott, Drew V. Introduction to Artificial Intell:-
gence. Addison-Wesley Publishing Company, 1987.

Hartrum, Thomas C. System Development Documentation Guidelines and Stan-
dards (Draft # 4). Department of Electrical and Computer Engineering, Air
Force Institute of Technology(AU), Wright-Patterson AFB, OH, January 1989.

Johnson, Steven E. A Graphics Editor for Structured Analysis with a Data Dic-
tionary. MS thesis, AFIT/GE/ENG/87D-28, School of Engineering, Air Force
Institute of Technology(AU), Wright-Patterson AFB, OH, December 1987.

Jung, Donghak Design of a Syntaz Validation Tool for Requirements Anal-
ysis Using Structured Analysis and Design Technique(SADT). MS thesis,
AFIT/GCS/ENG/88S-1, School of Engineering, Air Force Institute of Tech-
nology(AU), Wright-Patterson AFB, OH, September 1988.

Luger, George F. and Stubblefield, William A. Artificial Intelligence and the
Design of Ezpert Systems. Benjamin and Cummings Publishing Company, Red-
wood City, CA, 1989.

Pressman, Roger S. Software Engineering: A Practioner’s Approach. Second
edition, New York, McGraw-Hill Book Company, 1989.

Giarratano, Joseph C. and Riley, Gary. Ezpert Systems: Principles and Pro-
gramming. PWS-KENT Publishing Company, Boston, 1989.

Ross, Douglas T. "Structured Analysis(SA): A language for Communicating
Ideas,” IEEE Transactions on Software Engineering, SE-3, No.1:16-34, January
1977.

BIB-1

15.

16.

17.

18.

(8
o

23.

Ross, Douglas T. and K. E. Schoman ”Structured Analysis for Requirements
Definition,” IEEE Transactions on Software Engineering, SE-3, No.1:6-15, Jan-
uary 1977.

Rowe Neil C. Artificial Intelligence Through Prolog. Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

SofTech, Inc. Guide to Understanding Activity Diagrams IDEF,. Waltham, MA,
September 1979(7500- 12).

Sommerville, lan. Software Engineering. third edition Addison-Wesley Publish-
ing Company, 1989.

. Sun Micorsystems, Inc. Pizrect Reference Manual. Mountain View, CA, May

1988(810-1785-10).

Sun M:crosystems, Inc. SunView Programmer’s Guide. Mountain View, CA,
September 1986(800-1345-10).

. Yau, Stephen S. and Tsai, Jeffery J. "Knowledge Representation of Software

Component Interconnection Information for Large-Scale Software Modifica-
tions,” IEEFE Transactions on Software Engineering,SE-13, No.3:355-361, March
1987.

2. Hartrum, Thomas C. Readings II - Requirements Analysis. Department of Elec-

trical and Computer Engineering, Class notes, Draft # 2, Air Force Institute of
Technology(AU), Wright-Patterson AFB, OH, January 1988.

Johnson, W. Lewis and Yue, Kaizhi "An Integrated Specfication Development
Framework,” Information Sciences Institute, University of Southern California,
CA, October, 1988.

Moore Michael J. and Sheffield James Rodney "A PDL Synthesizer for Real-
Time Systems,” SofTech, Inc., Dayton, OH, 1989.

Cureton, Bill "Program Synthesis: A Paradigm for Knowledge-Based Software
Engineering,” Sun Technology, 21-25, Winter, 1989.

BIB-2

Intaek Kim ¥

the son of BongYou and PungOk Kim. He graduated from the Ohyoun high school
in 1978 and enterd the Korea Air Force Academy from which he received the major
degree of a Bachelor of Ehgineering in Electrical Engineering in March 1983. He
became a service man on aé¢tive duty in March 1983, attended Seoul National Uni-
versity and received a Bachelor of Science Degree with major in Computer Science
and Statistics in Feburary 1986. After graduation, He was assigned to R.O.K. Air
Force Academy where served as Instructor in the Department of Computer Science
and Statistics on CheungJu, Korea until March 1988. He entered the school of Engi-
neering, Air Force Institute of Téchnology, Wright- Patterson Air Force Base, Ohio,
in May 1988. ’

VITA-1

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Fomi Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFIT/GCS/ENG/90J-02

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
School of Engineering

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and 2IP Cod2)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
0SDb/SDIO S/BM
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Pentagon PROGRAM PROJECT TASK WORK UNIT
: ELEMENT NO. | NO. NC ACCESSION NO.
Washington, DC 20301-7100

11. TITLE (Include Security Classification)

EXPERT SYSTEM IN SOFTWARE ENGINEERING USING
STRUCTURED ANALYSIS AND DESIGN TECHNIQUE (SADT)

12. PERSONAL AUTHOR(S)

intaek Kim, Captain Republic of Korea Air Force

13a. TYPE OF REPORT
Thesis

13b. TIME COVERED
FROM T0

15. PAGE COUNT

A3

14. DATE OF REPORT (Year, Month, Day)
199¢, June

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP
12 03

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Software Engineering, Knowledge-Based System,

CASE tool,Predicate representation

Design Technique (SADT) method.

diagram.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis investigation presents the development of an application
of expert system for checking the syntax of Structured Analysis and
The tool provides the requirements
analyst and the designer with a means of checking the syntax of IDEF0
The tool was implemented using expert system thechnique.
The syntax checking process allows the extension of the rule base

for the syntax knowledge representation of SADT methodology.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
O uncrassiFiepunumiTed [SAME AS RPT.

(3 DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

. Lamont

223 NAME OF RESPONSIBLE INOIVIDUAL
r. Gary

Unclassified
22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL
513-256-1279 AFIT/ENG

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

